深入学习Apache Flume:分布式日志收集与Hadoop集成

5星 · 超过95%的资源 需积分: 10 10 下载量 105 浏览量 更新于2023-05-31 收藏 7.21MB PDF 举报
"Apache Flume 分布式日志收集用于 Hadoop(PACKT,2nd,2015)" Apache Flume 是一个专为高效收集、聚合和移动大量日志数据而设计的分布式、可靠且可用的服务。它常用于将应用程序服务器的日志流式传输到 HDFS,以便进行临时分析。本书提供了对 Flume 架构及其逻辑组件的概述,旨在帮助读者深入理解 Flume 的工作原理以及如何构建和配置 Flume 代理,以动态传输系统中的流数据和日志到 Hadoop。 书中详细介绍了以下内容: 1. Flume 架构理解:首先,读者将了解到 Flume 的核心架构,包括其基本组件,如节点、源(Sources)、通道(Channels)和接收器(Sinks)。Flume 的这些组件协同工作,确保数据的稳定传输。 2. 下载与安装:如何从 Apache 官方网站下载并安装开源的 Flume,这对于实际操作至关重要。 3. 实时日志传输:通过一个详尽的例子,读者将学习如何实时(Near Real Time, NRT)传输 Web 日志到 Kibana/Elasticsearch,并将其归档在 HDFS 中。 4. 生产环境中的日志传输技巧:提供有关在生产环境中安全有效地传输日志和数据的提示和技巧。 5. HDFS 接收器配置:深入理解并配置 Hadoop 文件系统(HDFS)接收器,这是将数据存储到 Hadoop 中的关键步骤。 6. Solr 集成:使用 morphline 支持的接收器将数据馈送进 Solr,扩展了 Flume 的数据处理能力。 7. 冗余数据流:通过设置接收器组创建冗余数据流,提高系统的容错性和可靠性。 8. 多种数据源的配置:学习如何配置各种来源以摄入不同类型的数据,适应不同的数据输入场景。 9. 基于内容的路由:检查数据记录并根据负载内容将其移动到多个目的地,实现灵活的数据分发。 10. 数据转换:在数据传输到 Hadoop 的过程中进行转换,同时监控数据流的状态,确保数据质量和流程的可监控性。 本书采用逐步的方式,从简单的功能开始,逐渐引入更高级的特性,最终形成一个完整的、适用于真实世界的端到端案例。无论你是初学者还是经验丰富的 IT 专业人士,这本书都将提供必要的知识和实践指导,帮助你充分利用 Apache Flume 的能力,优化日志管理和大数据分析流程。
2015-07-02 上传
Apache Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and moving large amounts of log data. Its main goal is to deliver data from applications to Apache Hadoop's HDFS. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with many failover and recovery mechanisms. Apache Flume: Distributed Log Collection for Hadoop covers problems with HDFS and streaming data/logs, and how Flume can resolve these problems. This book explains the generalized architecture of Flume, which includes moving data to/from databases, NO-SQL-ish data stores, as well as optimizing performance. This book includes real-world scenarios on Flume implementation. Apache Flume: Distributed Log Collection for Hadoop starts with an architectural overview of Flume and then discusses each component in detail. It guides you through the complete installation process and compilation of Flume. It will give you a heads-up on how to use channels and channel selectors. For each architectural component (Sources, Channels, Sinks, Channel Processors, Sink Groups, and so on) the various implementations will be covered in detail along with configuration options. You can use it to customize Flume to your specific needs. There are pointers given on writing custom implementations as well that would help you learn and implement them. By the end, you should be able to construct a series of Flume agents to transport your streaming data and logs from your systems into Hadoop in near real time.