Python深度学习入门指南:理论与实战

需积分: 10 10 下载量 18 浏览量 更新于2024-07-09 1 收藏 13.66MB PDF 举报
"《Practical Deep Learning: A Python-Based Introduction》是一本面向初学者的实用指南,专为对机器学习感兴趣但不知如何入门的人设计。该书聚焦于深度学习这一机器学习子领域,作者Ronald T. Kneusel以Python为主要工具,旨在教授读者理解深度学习的核心概念,以及如何动手构建自己的模型。 书中强调理论与实践相结合,要求读者具备基本的计算机编程知识和高中数学水平。首先,作者会引导读者熟悉Python语言,接着深入讲解如何创建高质量的训练数据集,利用Scikit-learn和Keras库进行操作,并评估模型的性能。这些内容有助于读者建立起坚实的深度学习基础。 书中还涵盖了经典机器学习模型(如k-近邻、随机森林和支持向量机)的工作原理,以及神经网络的运作和训练过程。特别地,读者将学习如何运用卷积神经网络(CNN),这是一个在图像处理等领域至关重要的技术。此外,本书鼓励读者从零开始开发深度学习模型,通过实践提升技能和自信心。 书中还提供丰富的实验和案例研究,让读者将所学知识付诸实践,包括所有的代码示例,可从GitHub链接<https://github.com/rkneusel9/PracticalDeepLearningPython/>获取。这本书是对深度学习这个快速发展的领域的一个全面且易懂的入门教材,适合那些希望深入探索自己的机器学习项目的读者。 版权信息:《Practical Deep Learning》由Ronald T. Kneusel编著,2021年出版,所有权利保留,未经版权所有者和出版社事先书面许可,不得任何形式复制或传播。本书的ISBN分别是1-7185-0074-7(印刷版)和1-7185-0075-4(电子版)。出版商为William Pollock,执行编辑为Barbara Yien,生产编辑为Dapinder Dosanjh,开发编辑为Alex Freed,封面插画由Gina Redman绘制,内部设计由Octopod Studios完成,技术审阅者为Paul Nord,校对工作分别由Chris Cartwright和Sharon Wilkey负责。部分章节使用的图片已获得许可,如图4-2中的边境牧羊犬肖像图,根据Creative Commons Attribution 2.0 Generic license发布。"
2017-04-18 上传
Nikhil Ketkar, "Deep Learning with Python: A Hands-on Introduction" English | ISBN: 1484227654 | 2017 | 143 pages | PDF | 7 MB Discover the practical aspects of implementing deep-learning solutions using the rich Python ecosystem. This book bridges the gap between the academic state-of-the-art and the industry state-of-the-practice by introducing you to deep learning frameworks such as Keras, Theano, and Caffe. The practicalities of these frameworks is often acquired by practitioners by reading source code, manuals, and posting questions on community forums, which tends to be a slow and a painful process. Deep Learning with Python allows you to ramp up to such practical know-how in a short period of time and focus more on the domain, models, and algorithms. This book briefly covers the mathematical prerequisites and fundamentals of deep learning, making this book a good starting point for software developers who want to get started in deep learning. A brief survey of deep learning architectures is also included. Deep Learning with Python also introduces you to key concepts of automatic differentiation and GPU computation which, while not central to deep learning, are critical when it comes to conducting large scale experiments. What You Will Learn Leverage deep learning frameworks in Python namely, Keras, Theano, and Caffe Gain the fundamentals of deep learning with mathematical prerequisites Discover the practical considerations of large scale experiments Take deep learning models to production Who This Book Is For Software developers who want to try out deep learning as a practical solution to a particular problem. Software developers in a data science team who want to take deep learning models developed by data scientists to production.