MATLAB实现语音信号处理:分帧加窗与基音周期提取

版权申诉
0 下载量 69 浏览量 更新于2024-10-07 收藏 6KB RAR 举报
MATLAB是一种高级数学软件,广泛应用于工程、科学和数学等领域,尤其在语音信号处理中具有重要作用。本资源以MATLAB为工具,讲述了语音信号处理中的关键步骤和算法。 首先,语音分帧是语音信号处理中的基础步骤,它将连续的语音信号分割为较短的帧,以便于分析。在MATLAB中,可以通过自定义函数或内置函数实现语音信号的分帧处理。分帧过程一般需要考虑帧长、帧移等因素,以满足特定分析的需求。 其次,加窗处理是为了减少信号两端的不连续性对频谱分析的影响。在MATLAB中,可以使用不同的窗函数,如汉明窗、汉宁窗、布莱克曼窗等,来对每一帧信号进行加窗处理。选择合适的窗函数可以有效控制信号泄露和频谱泄露,从而提高信号处理的准确性。 线性预测是语音信号处理中另一项核心技术,它利用过去和当前的样本值来预测未来的样本值。在MATLAB中,可以通过线性预测编码(LPC)技术来估计语音信号的参数,这通常用于语音编码、语音合成和语音识别等领域。线性预测分析能够提供基音周期、共振峰频率等重要语音特征。 基音周期提取是语音信号处理中的关键环节,它涉及到语音信号的音调信息。基音周期是指发音时声带振动的周期性,它决定了声音的音调高低。在MATLAB中,可以通过多种算法提取基音周期,例如自相关法、倒谱分析法等。准确的基音周期提取对于语音合成和语音识别等应用至关重要。 MATLAB在实现上述功能时,通常会涉及到数字信号处理、信号分析、滤波器设计等领域的知识。此外,MATLAB还提供了一系列工具箱,如信号处理工具箱(Signal Processing Toolbox)、通信系统工具箱(Communications System Toolbox)等,这些工具箱中包含了许多现成的函数和算法,可以大大简化语音信号处理的开发工作。 在使用MATLAB进行语音信号处理时,用户需要具备一定的MATLAB编程基础和信号处理知识。通过对MATLAB的熟练使用,可以对语音信号进行有效的分析和处理,从而开发出各种语音相关的应用系统。 综上所述,本资源详细介绍了使用MATLAB进行语音信号分帧、加窗、线性预测和基音周期提取的基本原理和方法,对于希望在语音信号处理领域进行深入研究的工程师和研究人员具有很高的参考价值。通过掌握这些知识点,可以利用MATLAB的强大功能来开发出性能优越的语音处理系统。
身份认证 购VIP最低享 7 折!
30元优惠券

import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train tf.compat.v1.reset_default_graph() EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: #定义输入与输出的格式 x = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.compat.v1.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} #直接调用封装好的函数来计算前向传播的结果 y = mnist_inference.inference(x, None) #计算正确率 correcgt_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correcgt_prediction, tf.float32)) #通过变量重命名的方式加载模型 variable_averages = tf.train.ExponentialMovingAverage(0.99) variable_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variable_to_restore) #每隔10秒调用一次计算正确率的过程以检测训练过程中正确率的变化 while True: with tf.compat.v1.Session() as sess: ckpt = tf.train.get_checkpoint_state(minist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #load the model saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print("After %s training steps, validation accuracy = %g" % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets(r"D:\Anaconda123\Lib\site-packages\tensorboard\mnist", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.compat.v1.app.run()对代码进行改进

239 浏览量

以下代码有什么错误,怎么修改: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: print("从指定路径中加载模型...") ckpt = tf.train.get_checkpoint_state(logs_train_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print('模型加载成功, 训练的步数为: %s' % global_step) else: print('模型加载失败,checkpoint文件没找到!') prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() def evaluate_images(test_img): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start() coord.request_stop() coord.join(threads) if __name__ == '__main__': test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') evaluate_images(test_img)

111 浏览量

import numpy as np class Node: j = None theta = None p = None left = None right = None class DecisionTreeBase: def __init__(self, max_depth, feature_sample_rate, get_score): self.max_depth = max_depth self.feature_sample_rate = feature_sample_rate self.get_score = get_score def split_data(self, j, theta, X, idx): idx1, idx2 = list(), list() for i in idx: value = X[i][j] if value <= theta: idx1.append(i) else: idx2.append(i) return idx1, idx2 def get_random_features(self, n): shuffled = np.random.permutation(n) size = int(self.feature_sample_rate * n) selected = shuffled[:size] return selected def find_best_split(self, X, y, idx): m, n = X.shape best_score = float("inf") best_j = -1 best_theta = float("inf") best_idx1, best_idx2 = list(), list() selected_j = self.get_random_features(n) for j in selected_j: thetas = set([x[j] for x in X]) for theta in thetas: idx1, idx2 = self.split_data(j, theta, X, idx) if min(len(idx1), len(idx2)) == 0 : continue score1, score2 = self.get_score(y, idx1), self.get_score(y, idx2) w = 1.0 * len(idx1) / len(idx) score = w * score1 + (1-w) * score2 if score < best_score: best_score = score best_j = j best_theta = theta best_idx1 = idx1 best_idx2 = idx2 return best_j, best_theta, best_idx1, best_idx2, best_score def generate_tree(self, X, y, idx, d): r = Node() r.p = np.average(y[idx], axis=0) if d == 0 or len(idx)<2: return r current_score = self.get_score(y, idx) j, theta, idx1, idx2, score = self.find_best_split(X, y, idx) if score >= current_score: return r r.j = j r.theta = theta r.left = self.generate_tree(X, y, idx1, d-1) r.right = self.generate_tree(X, y, idx2, d-1) return r def fit(self, X, y): self.root = self.generate_tree(X, y, range(len(X)), self.max_depth) def get_prediction(self, r, x): if r.left == None and r.right == None: return r.p value = x[r.j] if value <= r.theta: return self.get_prediction(r.left, x) else: return self.get_prediction(r.right, x) def predict(self, X): y = list() for i in range(len(X)): y.append(self.get_prediction(self.root, X[i])) return np.array(y)

143 浏览量
216 浏览量