为我解释每一行代码,增加注释 def video_recognize(v_path, s_path): cap = cv2.VideoCapture(v_path) fps = cap.get(cv2.CAP_PROP_FPS) # 帧率 w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # 宽 h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 高 fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') # 指定视频编码方式 videoWriter = cv2.VideoWriter(s_path, fourcc, fps, (w, h)) # 创建视频写对象 frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # 视频总帧数 if v_path == 0: while 1: # Find haar cascade to draw bounding box around face ret, frame = cap.read() facecasc = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = facecasc.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y - 50), (x + w, y + h + 10), (255, 0, 0), 2) roi_gray = gray[y:y + h, x:x + w] cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray, (48, 48)), -1), 0) prediction = model.predict(cropped_img) maxindex = int(np.argmax(prediction)) cv2.putText(frame, emotion_dict[maxindex], (x + 20, y - 60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA) # show the output frame cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the `q` key was pressed, break from the loop if key == ord("q"): break
时间: 2023-11-12 21:04:19 浏览: 193
```
def video_recognize(v_path, s_path):
# 打开视频文件
cap = cv2.VideoCapture(v_path)
# 获取视频的帧率、宽度和高度
fps = cap.get(cv2.CAP_PROP_FPS)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# 指定视频编码方式
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
# 创建视频写对象
videoWriter = cv2.VideoWriter(s_path, fourcc, fps, (w, h))
# 获取视频的总帧数
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# 如果输入的是摄像头设备号
if v_path == 0:
while 1:
# 读取一帧图像
ret, frame = cap.read()
# 使用Haar级联分类器检测人脸
facecasc = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = facecasc.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=5)
# 针对每张人脸,进行情绪识别并在图像上标出人脸和情绪
for (x, y, w, h) in faces:
cv2.rectangle(frame, (x, y - 50), (x + w, y + h + 10), (255, 0, 0), 2)
roi_gray = gray[y:y + h, x:x + w]
cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray, (48, 48)), -1), 0)
prediction = model.predict(cropped_img)
maxindex = int(np.argmax(prediction))
cv2.putText(frame, emotion_dict[maxindex], (x + 20, y - 60), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 255), 2, cv2.LINE_AA)
# 显示图像
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# 如果按下键盘的q键,则退出程序
if key == ord("q"):
break
```
这段代码实现了从视频文件中读取帧图像,识别出其中的人脸并进行情绪分析,最后将分析结果写入新的视频文件中。
其中,`v_path`是输入视频文件的路径,`s_path`是输出视频文件的路径。`cap`是视频捕获对象,`fps`、`w`、`h`和`frame_count`分别表示帧率、宽度、高度和总帧数。`fourcc`是视频编码方式,`videoWriter`是视频写对象。
如果输入的是摄像头设备号,则进入循环,不断读取一帧图像并使用Haar级联分类器检测人脸。对于每张人脸,先在图像上标出人脸的位置,再对人脸进行情绪分析并在图像上标出情绪。最后将处理后的图像显示出来,如果按下键盘的q键,则退出程序。
阅读全文