Linux版CLUCalc 4.3.3:基于C++的开源计算器

需积分: 14 2 下载量 81 浏览量 更新于2024-10-24 收藏 23.17MB ZIP 举报
资源摘要信息:"CLUCalcLinux是一个开源的Linux版本的计算器程序,它是基于CLUCalc 4.3.3版本开发的。CLUCalc是一个用C++编写的多功能计算器软件,提供了复杂的数学运算和科学计算功能,广泛应用于科学、工程、教育等领域。CLUCalcLinux继承了原版CLUCalc的所有功能,并针对Linux操作系统进行了优化和适配,使其能够在Linux环境下流畅运行。 CLUCalcLinux提供了丰富的数学运算工具,包括但不限于基本算术运算(加减乘除)、代数运算、三角函数计算、统计分析、矩阵运算等。它支持多种数学表达式的解析和计算,用户可以输入复杂的数学公式,并得到精确的结果。此外,CLUCalcLinux还具备图形显示功能,能够将计算结果以图表形式直观展示,便于用户理解和分析数据。 为了便于用户使用,CLUCalcLinux采用了友好的用户界面设计。用户可以通过图形用户界面(GUI)进行操作,而无需记住复杂的命令或函数。其界面布局合理,操作简便,让用户能够快速上手并高效地完成各种计算任务。 由于CLUCalcLinux是基于C++开发的,它继承了C++语言高效、稳定和面向对象的特性。C++是一种广泛应用于系统编程和高性能应用开发的编程语言。CLUCalcLinux的开发团队可能利用了C++提供的高级特性,如模板编程、多态和STL(标准模板库),来增强程序的功能和性能。这种基于C++的开发方式确保了CLUCalcLinux在处理大量数据和复杂计算时的性能表现。 CLUCalcLinux的开发和维护依赖于开放源代码社区的共同合作。开源软件是指源代码可以被公众访问并且可以由任何人自由使用、修改和分发的软件。这使得CLUCalcLinux能够不断地吸纳新的功能和修复已知的bug,从而持续改进和增强用户体验。开源项目通常通过版本控制系统如Git来管理源代码的变更,这可能解释了为什么CLUCalcLinux的压缩包子文件使用了‘master’这样的常见版本控制术语命名。 CLUCalcLinux的使用不仅限于个人用户,它也适用于教育机构、研究实验室和各种工程领域,可以帮助专业人士进行精确的数学计算和数据分析。由于它是专门为Linux操作系统设计的,因此非常适合那些在Linux环境中工作或学习的用户,例如在使用Linux作为服务器系统或者开发环境的程序员和系统管理员。 总的来说,CLUCalcLinux是一个功能强大、易于使用的计算器软件,它不仅继承了CLUCalc 4.3.3的所有优点,还针对Linux操作系统进行了优化,使其成为Linux用户进行数学和科学计算的理想选择。"
2018-12-28 上传
Geometric Algebra Applications Vol. I: Computer Vision, Graphics and Neurocomputing By 作者: Eduardo Bayro-Corrochano ISBN-10 书号: 3319748289 ISBN-13 书号: 9783319748283 Edition 版本: 1st ed. 2019 出版日期: 2018-08-13 pages 页数: 753 $219.99 The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems. 1 Geometric Algebra for the Twenty-First Century Cybernetics Part I Fundamentals of Geometric Algebra 2Introduction to Geometric Algebra 3 Differentiation,Linear,and Multilinear Functions in Geometric Algebra 4 Geometric Calculus 5 Lie Algebras,Lie Groups,and Algebra of Incidence Part ll Euclidean,Pseudo-Euclidean Geometric Algebras, Incidence Algebra,Conformal and Projective Geometric Algebras 62D,3D,and 4D Geometric Algebras 7 Kinematics of the 2D and 3D Spaces 8 Conformal Geometric Algebra 9 The Geometric Algebras G6,0,2+,G6,3,G9,3+,G6,0,6+ 10 Programming Issues Part ll Image Processing and Computer Vision 11 Quaternion-Clifford Fourier and Wavelet Transforms 12 Geometric Algebra of Computer Vision Part IV Machine Learning 13 Geometric Neurocomputing Part V Applications of GA in lmage Processing,Graphics and Computer Vision 14 Applications of Lie Filters,Quaternion Fourier,and Wavelet Transforms 15 Invariants Theory in Computer Vision and Omnidirectional Vision 16 Geometric Algebra Tensor Voting,Hough Transform,Voting and Perception Using Conformal Geometric Algebra 17 Modeling and Registration of Medical Data Part VI Applications of GA in Machine Learning 18 Applications in Neurocomputing 19 Neurocomputing for 2D Contour and 3D Surface Reconstruction 20 Clifford Algebras and Related Algebras