多模态联合稀疏表示在视频目标跟踪中的应用
需积分: 31 106 浏览量
更新于2024-09-06
收藏 695KB PDF 举报
"该资源是一篇关于多模态联合稀疏表示在视频目标跟踪中的应用的学术论文,由段喜萍、刘家锋和唐降龙撰写,发表在中国科技论文在线。文章探讨了在复杂场景下,如何利用多模态特征提高目标跟踪的精度,提出了联合稀疏表示的方法,并在粒子滤波框架下进行了实现。实验结果显示,这种方法相比于单模态和多模态独立稀疏表示的跟踪算法,具有更高的精度。"
在计算机视觉领域,视频目标跟踪是一项关键任务,尤其在复杂的环境条件下,如何准确地定位并追踪目标是一项挑战。传统的单模态特征,如颜色、纹理或形状,可能不足以区分目标与背景,导致跟踪性能下降。针对这一问题,该论文提出了基于多模态联合稀疏表示的跟踪策略。
联合稀疏表示是一种将不同模态的特征融合在一起,以增强表示的稳定性和鲁棒性的方式。在该方法中,作者考虑到了分别对每种模态进行稀疏表示可能导致的不稳定性,以及不同模态之间的相关性。他们采用粒子滤波框架来实施这一策略,粒子滤波是一种递归的贝叶斯方法,适用于非线性、非高斯状态估计问题。
在跟踪过程中,每个粒子代表一种可能的目标状态,其多模态特征被联合稀疏表示,以促使所有模态特征产生相似的稀疏模式。通过计算粒子的各模态重建误差,可以评估每个粒子的观察概率。最终,选择观察概率最大的粒子作为当前目标状态的估计。这种方法的优势在于,它不仅结合了多模态信息,还利用稀疏表示提高了特征区分度,从而提高了跟踪精度。
实验部分对比了基于本文方法与其他基于单模态和多模态独立稀疏表示的跟踪算法,结果证实了本文方法在精度上的优越性。这表明,多模态联合稀疏表示在处理复杂场景的目标跟踪时,能有效提升跟踪效果,对于未来的研究和实际应用具有重要的参考价值。
关键词涉及的领域包括计算机视觉、目标跟踪、粒子滤波和稀疏表示,这些都是视频分析和模式识别领域的核心概念。通过深入理解和应用这些技术,可以进一步优化目标检测和跟踪算法,适应更广泛的环境和应用场景。
2021-08-19 上传
2021-07-10 上传
2022-04-17 上传
2023-10-28 上传
2023-08-31 上传
2023-02-21 上传
2023-05-22 上传
2023-08-18 上传
2023-02-17 上传
weixin_38744375
- 粉丝: 373
- 资源: 2万+
最新资源
- PythonLLVM:基于py2llvm的python的LLVM编译器
- 迷宫搜索游戏应用程序:简单的搜索视频游戏应用程序
- TaskTrackerApp
- DYL EXPRESS 中马集运仓-crx插件
- Security题库.zip
- Clip2VO:CA-Visual Object的Clipper兼容性库-开源
- 365步数运动宝v4.1.84
- ruscello:打字稿中的redux + react-redux
- Roman-Shchorba-KB20:ЛабораторніроботизДД“Базовіметодологіїтатехнологіїпрограмування”студентаакаееггрупиКІ
- PCAPFileAnalyzer:分析 PCAP 网络捕获文件
- 西安市完整矢量shp数据
- 泽邦集运代购和代运助手-crx插件
- python的tkinter库实现sqlite3数据库连接和操作样例源代码
- VC++2010学生版(离线安装包)
- basic-webpage
- flx:Emacs的模糊匹配...崇高的文字