Dapper:Google的大型分布式系统追踪基础设施详解

需积分: 10 3 下载量 174 浏览量 更新于2024-09-08 收藏 1.48MB PDF 举报
Dapper分布式跟踪系统是一个由Google在2010年发布的技术报告,标题为"Dapper: A Large-Scale Distributed Systems Tracing Infrastructure"。这份报告详细介绍了Google内部开发的一种用于理解和优化复杂、大规模分布式系统性能的工具。在现代互联网服务中,这些应用通常由多个团队、使用不同编程语言开发的软件模块构成,分布在多台机器和物理设施之间,因此对系统的深入理解和监控变得至关重要。 Dapper的设计目标是提供一种高效、透明且广泛部署的追踪基础设施,以解决大型分布式系统中的问题。它与Magpie[3]和X-Trace[12]等其他追踪系统在概念上有所相似,但在设计上做出了一些关键选择,以降低对系统性能的影响和提高部署的灵活性。 报告中阐述了Dapper的主要特点: 1. **低开销**:Dapper注重在不影响系统性能的前提下实现跟踪,通过精心设计的架构和数据收集策略,减少了不必要的追踪开销,使得系统能够在处理海量数据的同时仍能提供有效的监控。 2. **应用级透明性**:Dapper旨在让开发者能够轻松地在其代码中添加追踪,而无需修改底层系统。这得益于轻量级的API和插件机制,使得应用程序可以无缝地集成追踪功能。 3. **广泛应用**:Dapper能够在Google的大型生产环境中普遍部署,覆盖数千台机器,体现了其在实际场景中的强大适应性和实用性。 4. **可扩展性**:Dapper能够随着系统的增长而扩展,支持分布式追踪,能够跨越多个物理设施,追踪跨组件和网络的交互。 5. **与其他系统的比较与改进**:尽管与Magpie和X-Trace有共同点,但Dapper在设计上可能引入了独特的优化,如数据压缩、数据存储和查询策略,以提升整体性能和效率。 Dapper是一个高度实用的分布式追踪系统,它不仅提供了强大的追踪能力,还兼顾了性能和易用性,对于理解和优化大规模分布式系统的复杂行为和性能问题具有重要意义。理解并学习Dapper的设计原则和实践经验,可以帮助开发者构建更加健壮和高效的分布式应用。
2017-11-13 上传
Modern Internet services are often implemented as complex, large-scale distributed systems. These applications are constructed from collections of software modules that may be developed by different teams, perhaps in different programming languages, and could span many thousands of machines across multiple physical facilities. Tools that aid in understanding system behavior and reasoning about performance issues are invaluable in such an environment. Here we introduce the design of Dapper, Google’s production distributed systems tracing infrastructure, and describe how our design goals of low overhead, application-level transparency, and ubiquitous deployment on a very large scale system were met. Dapper sharesconceptualsimilaritieswithothertracingsystems, particularlyMagpie[3]andX-Trace[12],butcertaindesign choices were made that have been key to its success in our environment, such as the use of sampling and restricting the instrumentation to a rather small number of common libraries. The main goal of this paper is to report on our experience building, deploying and using the system for over two years, since Dapper’s foremost measure of success has been its usefulness to developer and operations teams. Dapper began as a self-contained tracing tool but evolved into a monitoring platform which has enabled thecreationofmanydifferenttools, someofwhichwere notanticipatedbyitsdesigners. Wedescribeafewofthe analysis tools that have been built using Dapper, share statisticsaboutitsusagewithinGoogle,presentsomeexample use cases, and discuss lessons learned so far.