第 36 卷第 2 期
2014 年 3 月
机器人 ROBOT
Vol.36, No.2
Mar., 2014
DOI:10.3724/SP.J.1218.2014.00179
AUV 纯方位目标跟踪轨迹优化方法
王艳艳
1,2
,刘开周
1
,封锡盛
1
(1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁省 沈阳 110016; 2. 中国科学院大学,北京 100049)
摘 要:为了进一步提高自主水下机器人(AUV)纯方位目标跟踪能力,从 AUV 轨迹优化方面进行了研
究.采用基于距离的分段轨迹优化方法:在跟踪目标的初始阶段以定位的位置误差 GDOP(geometrical dilution of
precision)作为优化对象,以期在定位跟踪的各个时刻能得到最优的定位精度;针对目标运动要素(位置、 速度、
航向等)估计趋于收敛的情况,提出了一种基于短期预测的轨迹优化方法,AUV 根据物理条件限制预测双方短期
状态,计算能够反映跟踪态势特征的收益函数,根据收益函数对自身某状态进行评估,估算出自身各个预测状态
的综合收益后,选出综合收益最大的那个状态作为短期目标,执行能到达该状态的行为.目标运动要素估计中使
用扩展卡尔曼滤波(EKF).最后,将该轨迹优化方法与基于 GDOP 的轨迹优化进行仿真对比,结果表明该方法能
够实现 AUV 与目标较快汇合.
关键词:自主水下机器人;纯方位跟踪;轨迹优化;收益函数;扩展卡尔曼滤波
中图分类号:TP29 文献标识码:A 文章编号:1002-0446(2014)-02-0179-06
Optimal AUV Trajectories for Bearings-Only Tracking
WANG Yanyan
1,2
,LIU Kaizhou
1
,FENG Xisheng
1
(1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract: In order to enhance the AUV (autonomous underwater vehicle) capability in bearings-only target tracking,
the AUV trajectory optimization needs to be studied. A piecewise trajectory optimization method based on distance is
proposed. In the initial phase of target tracking, GDOP (geometrical dilution of precision) matrix of positioning errors is
taken as the objective function in optimization, in order to achieve optimal positioning precision at each time. Then, an
AUV trajectory optimization method based on short-term prediction is proposed for the cases that the estimation of target
navigation parameters (position, velocity and heading) converges. AUV predicts its own and the target’s possible future states
according to physical limits, and calculates its every state income according to the characteristics of the tracking trend. Based
on the income, one of its own states is evaluated, and the consolidated income of every prediction state is estimated. At last,
a proper state with the maximum consolidated income is chosen as its shot-term target, and the action leading to the target
is executed. The extended Kalman filter algorithm is used to estimate the navigation parameters of the target. Finally, the
proposed method and the GDOP based trajectory optimization method are compared through simulation, and the result shows
that the AUV using the proposed method can capture the target as soon as possible.
Keywords: autonomous underwater vechile; bearings-only tracking; trajectory optimization; earnings function; extended
Kalman filter
1 引言(Introduction)
AUV 纯方 位目 标 跟 踪 过 程 中 搭 载 的 被 动 传
感器声纳仅能探测到目标的方位序列.由于目标
运 动 信 息 未 知,首 先 需 要 通 过 TMA(target mo-
tion analysis)算法估计目标当前运动状态,只有
得到了目标的运动信息,AUV 才能有目的地规划
自身运动轨迹,进而与目标汇合.研究表明,目
标运动要素估计精度与 AUV 运动轨迹之间存在
着密不可分的关系,受已知条件限制,AUV 只能
利用估计结果对机动航路进行优化,这正是 BOT
(bearing-only tracking)领域的研究难点
[1]
. 本文
中 AUV 轨迹优化不仅要考虑上面提到的目标运
动要素 精度问题,最终还要实 现 AUV 与目标的
基金项目:国家自然科学基金资助项目(61273334);辽宁省自然科学基金资助项目(2011010025-401);中国科学院知识创新工程重大项目
(YYYJ-0917).
通信作者:王艳艳,wangyy@sia.cn 收稿/录用/修回:2013-05-02/2013-11-07/2014-01-22
179