基于贝叶斯统计的桥梁损伤识别与健康监测研究

需积分: 50 9 下载量 151 浏览量 更新于2024-07-18 4 收藏 3.43MB PDF 举报
"这篇资源是浙江大学硕士研究生王建江关于基于贝叶斯统计方法的桥梁损伤识别研究的学位论文,主要探讨了在土木工程,尤其是桥梁与隧道工程中的贝叶斯更新应用。" 贝叶斯更新是概率统计中的一种重要方法,特别是在处理不确定性问题时,如结构健康监测和损伤识别。在土木工程中,尤其是对于大跨度桥梁的安全性和耐久性的评估,贝叶斯更新起着关键作用。它允许工程师通过不断获取新数据来更新对结构状态的认识,即利用先验知识(初始对结构状态的了解)和新的观测数据来不断修正对结构损伤可能性的估计。 论文指出,随着社会技术的进步和交通建设的快速发展,大跨度桥梁的建设增多,人们对这些重要桥梁的安全需求日益增长。因此,桥梁健康监测系统和智能控制技术得以应用,其中贝叶斯统计方法是关键的损伤识别工具。论文详细回顾了当前桥梁损伤识别领域的发展,并着重介绍了基于概率统计的损伤识别方法。 论文的核心内容包括两部分:一是提出了一种基于结构模态试验的统计损伤识别方法,该方法假设结构损伤是渐进和局部的;二是构建了一种基于贝叶斯统计的新健康监测策略,该策略可以估计损伤的位置和概率,从而更准确地描述结构损伤状态。此外,针对非预测损伤位置出现的情况,论文提出了损伤位置的迭代计算策略,并给出了两种迭代判断准则。 论文还开发了MATLAB程序,用于计算结构动力特性、进行一阶摄动分析和识别结构损伤,并在一个连续箱梁的识别研究中取得了初步成功,随后讨论了应用于斜拉桥损伤识别的可能性。论文最后列出了未来需要进一步研究的相关问题,比如关键词涵盖的桥梁健康监测、损伤识别、有限元分析、贝叶斯分析、摄动理论、损伤概率、损伤预警和模态试验等。 这篇论文深入探讨了贝叶斯统计在土木工程中,特别是桥梁健康监测和损伤识别的应用,为实际工程提供了理论支持和计算工具,有助于提升桥梁安全性和维护效率。