迭代自适应逆滤波在语音情感识别中的应用
需积分: 9 95 浏览量
更新于2024-09-07
收藏 62KB PDF 举报
"这篇论文探讨了基于NAQ(归一化振幅商)的语音情感识别技术,通过迭代自适应逆滤波器估计声门激励,利用F-ratio准则评估情感区分能力,并采用混合高斯模型进行情感建模和识别。实验在eNTERFACE'05情感语音数据库上进行,对比了整句NAQ值和元音段NAQ值作为特征的效果,结果显示元音段NAQ值是有效的语音情感特征。"
本文的研究重点在于语音情感识别,采用了先进的信号处理技术来提取情感特征。首先,使用迭代自适应逆滤波器来估计声门激励,这是一种用于解析语音信号,获取其基本成分的技术。该方法能够精细地分析语音信号的时域特性,为后续的情感识别提供基础数据。
接下来,论文提到了归一化振幅商(NAQ)作为特征。NAQ是衡量声门激励振幅变化的一个参数,它能够反映语音信号的动态特性,对于情感表达有显著的影响。为了评估NAQ在情感区分上的能力,研究者应用了F-ratio准则。F-ratio是一种统计检验,用于判断不同组间的方差是否具有显著差异,这里用于判断不同情感状态下的NAQ值是否有明显区别。
之后,混合高斯模型(GMM)被用来建立语音情感模型并进行识别。GMM是一种概率模型,常用于语音识别领域,能有效捕获数据的统计分布特性。在本研究中,GMM被用来建模不同情感状态下的NAQ分布,从而实现情感的分类和识别。
实验部分,研究人员使用了eNTERFACE'05情感语音数据库,这是一个广泛使用的语音情感资源,包含了多种情感状态的语音样本。他们比较了以整个句子的NAQ值和仅以元音部分的NAQ值作为特征的情感识别效果。结果显示,元音段的NAQ值更能体现情感特征,这可能是因为元音在语音中承载了更多的情感信息。
总结来说,这篇论文通过综合运用迭代自适应逆滤波、归一化振幅商、F-ratio准则和混合高斯模型,提出了一种有效的情感识别方法。实验结果证实了这种方法的可行性,特别是在使用元音段NAQ值作为特征时,能提高情感识别的准确性和有效性。这项工作对于理解人类情感表达、提升人机交互体验以及发展情感计算应用具有重要的理论和实践价值。
2008-11-03 上传
2024-10-04 上传
2024-10-04 上传
2024-10-04 上传
weixin_39841882
- 粉丝: 444
- 资源: 1万+
最新资源
- ***+SQL三层架构体育赛事网站毕设源码
- 深入探索AzerothCore的WoTLK版本开发
- Jupyter中实现机器学习基础算法的教程
- 单变量LSTM时序预测Matlab程序及参数调优指南
- 俄G大神修改版inet下载管理器6.36.7功能详解
- 深入探索Scratch编程世界及其应用
- Aria2下载器1.37.0版本发布,支持aarch64架构
- 打造互动性洗车业务网站-HTML5源码深度解析
- 基于zxing的二维码扫描与生成树形结构示例
- 掌握TensorFlow实现CNN图像识别技术
- 苏黎世理工自主无人机系统开源项目解析
- Linux Elasticsearch 8.3.1 正式发布
- 高效销售采购库管统计软件全新发布
- 响应式网页设计:膳食营养指南HTML源码
- 心心相印婚礼主题响应式网页源码 - 构建专业前端体验
- 期末复习指南:数据结构关键操作详解