深度学习笔记:机器翻译详解(注意力机制+Seq2seq&Transformer)
115 浏览量
更新于2024-08-30
1
收藏 707KB PDF 举报
深度学习笔记 - 机器翻译入门:注意力机制与Seq2seq模型及Transformer
机器翻译是一种自然语言处理任务,目标是将一段文本从一种语言自动转换成另一种语言,利用神经网络技术解决这一问题,即神经机器翻译(NMT)。NMT的主要特点是输出是一个完整的单词序列,而非逐词翻译,这使得模型能够捕捉到语言结构的连续性。输出序列的长度通常与输入源序列长度不固定,因此需要处理变长的序列。
在实现机器翻译时,代码首先导入必要的库,如os、sys、d2l等,这些库将在后续的数据预处理、模型构建和训练过程中扮演重要角色。例如,通过`os.listdir`获取文件夹内容,`sys.path.append`用于设置模块搜索路径,`coll`可能是`collections`模块的简称。
数据预处理阶段,文本读取并进行清理,去除非字母字符,将所有字符转换为小写,并通过`preprocess_raw`函数进一步处理,确保数据适合模型输入。例如,对英文和法文文本中的标点符号进行处理,并合并连续的空格。
接下来,将文本分割成单独的句子(lines),然后每行进一步分解成单词,形成源语言和目标语言的句子对。这为后续的编码器-解码器(Encoder-Decoder)模型提供了基础数据,编码器负责捕获源语言的上下文信息,而解码器则基于这些信息生成目标语言的翻译。
注意力机制是提高机器翻译性能的关键,它允许模型在解码过程中关注源序列的不同部分,根据当前生成的单词选择最相关的部分进行翻译。Seq2seq模型是早期广泛应用的框架,它包含一个编码器和一个循环神经网络(RNN)或长短期记忆网络(LSTM)的解码器。然而,Transformer模型引入了自注意力机制,它完全放弃了RNN,通过多头注意力机制和位置编码加速了模型的训练速度和翻译质量。
在Transformer模型中,编码器和解码器都是由多个自注意力层和前馈神经网络(FFN)组成的,每个层都有自注意力机制,使得信息在网络中更加高效地传播。此外,编码器输出的固定大小的向量(即“编码器隐藏状态”)作为解码器的输入,减少了长距离依赖的问题。
这个深度学习笔记介绍了机器翻译的基本概念、主要特点,以及如何通过注意力机制和Seq2seq模型(如基于RNN的版本)或Transformer模型来实现自动翻译。它涵盖了数据预处理、模型架构以及如何通过编码器和解码器处理变长序列的过程。通过学习这些内容,读者将能理解并实践现代神经机器翻译的核心技术。
2021-01-06 上传
2023-08-04 上传
2023-08-18 上传
2023-02-07 上传
2023-06-12 上传
2024-04-23 上传
2023-04-27 上传
2024-08-24 上传
2023-06-08 上传
weixin_38641896
- 粉丝: 2
- 资源: 915
最新资源
- MATLAB实现小波阈值去噪:Visushrink硬软算法对比
- 易语言实现画板图像缩放功能教程
- 大模型推荐系统: 优化算法与模型压缩技术
- Stancy: 静态文件驱动的简单RESTful API与前端框架集成
- 掌握Java全文搜索:深入Apache Lucene开源系统
- 19计应19田超的Python7-1试题整理
- 易语言实现多线程网络时间同步源码解析
- 人工智能大模型学习与实践指南
- 掌握Markdown:从基础到高级技巧解析
- JS-PizzaStore: JS应用程序模拟披萨递送服务
- CAMV开源XML编辑器:编辑、验证、设计及架构工具集
- 医学免疫学情景化自动生成考题系统
- 易语言实现多语言界面编程教程
- MATLAB实现16种回归算法在数据挖掘中的应用
- ***内容构建指南:深入HTML与LaTeX
- Python实现维基百科“历史上的今天”数据抓取教程