MATLAB图像处理实战:转换与增强
5星 · 超过95%的资源 需积分: 40 88 浏览量
更新于2024-09-10
5
收藏 13KB TXT 举报
"MATLAB图像处理源程序"
这篇文章主要介绍了如何使用MATLAB进行基本的图像处理操作,包括图像的读取、转换、调整和直方图均衡化。MATLAB是一款强大的科学计算软件,其中包含了丰富的图像处理工具箱,使得图像处理变得简单易行。
1. 图像反转:
在MATLAB中,可以使用`imread`函数读取图像,例如`I=imread('xian.bmp')`读取名为"xian.bmp"的图像。将图像转换为双精度浮点型`J=double(I)`,然后进行反转操作`J=-J+(256-1)`,确保结果在0-255之间。最后,再转换回无符号8位整型`H=uint8(J)`,并用`imshow`显示原图像和处理后的图像。
2. 色彩空间转换与对比度调整:
`rgb2gray`函数可以将RGB图像转换为灰度图像,如`I1=rgb2gray(I)`。`imadjust`函数用于调整图像的对比度,如`J=imadjust(I1,[0.1,0.5],[])`,这里将输入图像的0.1-0.5灰度区间映射到0-1区间,展示出不同对比度效果。同样,`K=imadjust(I1,[0.3,0.7],[])`则将0.3-0.7区间映射到0-1,再次显示调整后的图像。
3. 对数变换:
将图像转换为双精度浮点型`J=double(I1)`,然后应用对数变换`J=40*log(J+1)`,这样可以增强图像的暗部细节。最后,将结果转换回无符号8位整型`H=uint8(J)`并显示。
4. 直方图均衡化:
`imhist`函数用于绘制图像的直方图,`histeq`函数则执行直方图均衡化,以提高图像的整体对比度。首先,读取图像并转换为灰度,然后分别显示原始图像的直方图和直方图均衡化后的图像。
这些代码示例涵盖了MATLAB图像处理的基础操作,对于学习和理解MATLAB图像处理非常有帮助。通过这些操作,可以了解如何对图像进行基本的预处理,为更复杂的图像分析和处理任务打下基础。在实际应用中,可以根据需要调整参数,以适应不同的图像处理需求。
2019-08-13 上传
2009-04-23 上传
2010-02-28 上传
2011-03-30 上传
2009-04-26 上传
2011-03-30 上传
2019-07-02 上传
技术小咖龙
- 粉丝: 1202
- 资源: 137
最新资源
- Android应用源码之写的google map api 应用.zip项目安卓应用源码下载
- AdvExpFig:导出 MATLAB 图-matlab开发
- SuperChangelog:超级变更日志插件的源代码
- death_calc_version2
- hw_python_oop
- LX-PWM,ev3程序怎么看c语言源码,c语言程序
- material-typeahead-sample
- 基于Linux、QT、C++的“别踩白块儿”小游戏
- physx-js:PhysX for JavaScript
- 提取均值信号特征的matlab代码-First_unofficial_entry_2021:First_unofficial_entry_20
- Siege_solution_website
- ecf-2021-jd
- number.github.io:通过Szymon Rutyna
- Kinesys-RenPy-Practice:RenPy制作游戏
- Ad,c语言源码反码补码转换代码,c语言程序
- vgrid:具有魔术媒体查询混合功能的可变SCSS网格系统