RANSAC算法:在数据匹配中有效剔除野点

版权申诉
0 下载量 36 浏览量 更新于2024-10-23 收藏 629KB RAR 举报
资源摘要信息: "RANSAC算法详解与应用场景" RANSAC(RANdom SAmple Consensus),意为随机抽样一致性算法,是一种在计算机视觉和图形学中常用的鲁棒性估计方法。该算法最早由Fischler和Bolles于1981年提出,主要用于在含有大量异常值的数据集中,估计数学模型的参数,如在直线拟合、平面拟合、图像匹配、运动估计等场景中去除非线性模型的外点(outliers)。RANSAC算法特别适合于数据集中包含高比例噪声或者测量误差较大的情况。 RANSAC算法的工作原理是重复执行以下步骤: 1. 随机选择一组包含最小数量的点的子集,这个数量等于模型的自由度。 2. 利用这组子集计算出模型参数。 3. 利用全部数据点,根据计算出的模型参数计算内点(inliers),也就是符合模型的点。 4. 确定内点数量是否足够多,如果是,就用所有内点重新计算模型参数;如果不是,就重复上述步骤。 RANSAC算法的核心在于通过反复的随机采样,找到一个最优模型,该模型能够使得尽可能多的点成为内点。在完成算法后,通常能够得到一个较为准确的模型参数估计,而那些不满足模型的点,即被认为是野点或外点的数据点,被去除。 在实际应用中,RANSAC算法的效率和准确性受到若干因素的影响: - 随机采样的次数:采样次数越多,找到正确模型的概率越高,但同时计算量也越大。 - 内点的判定条件:需要一个合适的阈值来判断点是否为内点。 - 最小样本数量:取决于模型的自由度,样本数量过少则无法准确估计模型,过多则会增加计算量。 - 内点数的阈值:当内点数量超过这个阈值时,认为找到了一个较为准确的模型。 RANSAC在各种领域都有广泛的应用,例如: - 计算机视觉中,用于图像配准、相机标定、特征匹配等。 - 机器人导航中,用于估计传感器数据和地图之间的对应关系。 - 3D重建中,用于从多张图片中重建场景的三维模型。 - 结构化光扫描中,用于消除散乱点云中的噪声点。 RANSAC算法的关键优势在于其鲁棒性,即对噪声和外点具有很强的容忍能力。然而,它也有不足之处,如无法给出不确定性的度量,对于不同分布的数据集可能表现不佳,以及可能需要较长的计算时间。 在使用RANSAC时,开发者需要精心选择算法参数,并根据具体的应用场景进行适当的调整和优化。此外,由于RANSAC的随机性质,多次运行可能会得到略微不同的结果,因此在需要确定性结果的应用中,可能需要结合其他方法使用。 总之,RANSAC算法因其高效的异常值剔除能力,在数据处理领域得到了广泛应用,尤其是在模型参数估计和数据集净化方面。

详细解释一下这段代码,每一句都要进行注解:tgt = f'/kaggle/working/{dataset}-{scene}' # Generate a simple reconstruction with SIFT (https://en.wikipedia.org/wiki/Scale-invariant_feature_transform). if not os.path.isdir(tgt): os.makedirs(f'{tgt}/bundle') os.system(f'cp -r {src}/images {tgt}/images') database_path = f'{tgt}/database.db' sift_opt = pycolmap.SiftExtractionOptions() sift_opt.max_image_size = 1500 # Extract features at low resolution could significantly reduce the overall accuracy sift_opt.max_num_features = 8192 # Generally more features is better, even if behond a certain number it doesn't help incresing accuracy sift_opt.upright = True # rotation invariance device = 'cpu' t = time() pycolmap.extract_features(database_path, f'{tgt}/images', sift_options=sift_opt, verbose=True) print(len(os.listdir(f'{tgt}/images'))) print('TIMINGS --- Feature extraction', time() - t) t = time() matching_opt = pycolmap.SiftMatchingOptions() matching_opt.max_ratio = 0.85 # Ratio threshold significantly influence the performance of the feature extraction method. It varies depending on the local feature but also on the image type # matching_opt.max_distance = 0.7 matching_opt.cross_check = True matching_opt.max_error = 1.0 # The ransac error threshold could help to exclude less accurate tie points pycolmap.match_exhaustive(database_path, sift_options=matching_opt, device=device, verbose=True) print('TIMINGS --- Feature matching', time() - t) t = time() mapper_options = pycolmap.IncrementalMapperOptions() mapper_options.extract_colors = False mapper_options.min_model_size = 3 # Sometimes you want to impose the first image pair for initialize the incremental reconstruction mapper_options.init_image_id1 = -1 mapper_options.init_image_id2 = -1 # Choose which interior will be refined during BA mapper_options.ba_refine_focal_length = True mapper_options.ba_refine_principal_point = True mapper_options.ba_refine_extra_params = True maps = pycolmap.incremental_mapping(database_path=database_path, image_path=f'{tgt}/images', output_path=f'{tgt}/bundle', options=mapper_options) print('TIMINGS --- Mapping', time() - t)

196 浏览量

import cv2 # 读取两幅待处理的图像 img1 = cv2.imread('image1.jpg', cv2.IMREAD_GRAYSCALE) img2 = cv2.imread('image2.jpg', cv2.IMREAD_GRAYSCALE) # 对图像进行高斯模糊 img1 = cv2.GaussianBlur(img1, (5, 5), 0) img2 = cv2.GaussianBlur(img2, (5, 5), 0) # 使用Shi-Tomasi算法检测特征点 corners1 = cv2.goodFeaturesToTrack(img1, 100, 0.01, 10) corners2 = cv2.goodFeaturesToTrack(img2, 100, 0.01, 10) # 对特征点进行亚像素定位 corners1 = cv2.cornerSubPix(img1, corners1, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) corners2 = cv2.cornerSubPix(img2, corners2, (5, 5), (-1, -1), criteria=(cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)) # 对特征点进行匹配 matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) kps1, descs1 = sift.detectAndCompute(img1, None) kps2, descs2 = sift.detectAndCompute(img2, None) matches = matcher.match(descs1, descs2) # 使用RANSAC算法进行匹配点筛选 src_pts = np.float32([kps1[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([kps2[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 对图像进行配准和拼接 result = cv2.warpPerspective(img1, M, (img1.shape[1] + img2.shape[1], img1.shape[0])) result[0:img2.shape[0], 0:img2.shape[1]] = img2 # 显示结果 cv2.imshow('Result', result) cv2.waitKey() cv2.destroyAllWindows()改进这段代码使其输出特征点连线图和拼接图

164 浏览量