漫谈数据挖掘:从入门到精通
需积分: 10 175 浏览量
更新于2024-07-23
收藏 21.08MB PDF 举报
"数据挖掘.pdf" 是一本关于数据挖掘的基础书籍,适合数据爱好者、管理者、客户经理、产品经理、工程师、分析师、教师和学生阅读。书中介绍了数据挖掘的基本概念、方法和应用,旨在帮助读者理解如何从大量数据中提取有价值的信息。
在数据挖掘的领域中,"大嘴巴 漫谈数据挖掘" 提出了一个轻松的学习方式,通过简约的文字和图表,让复杂的概念易于理解。作者易向军强调了数据挖掘在用户体验、技术实现、精细化运营和市场拓展等方面的重要性,并提供了其在社交媒体上的联系方式。
书的内容分为三个境界,从待入境到已入境再到第三境,分别对应数据挖掘的介绍、应用和深入学习。涵盖的知识点包括:
1. 数据挖掘简介:介绍了数据挖掘的基本概念,即从海量历史数据中提取有价值信息的过程。
2. 概率定义:讲解概率理论,这是数据分析和预测模型的基础。
3. 随机变量和数字特征:讨论数据的统计特性,如均值、方差等。
4. 抽样分布和参数估计:介绍如何从样本数据中推断总体参数。
5. 假设检验:阐述如何验证统计假设,判断结果是否显著。
6. 决策树:数据分类和预测的常用工具,通过树状结构进行决策。
7. 贝叶斯方法:结合先验知识进行概率推理。
8. 线性回归和逻辑回归:两种常见的连续和离散变量预测模型。
9. 时间序列分析:处理按时间顺序排列的数据,用于预测趋势和周期性。
10. 因子分析:识别数据中潜在的结构和关系。
11. 信度分析和效度分析:评估测量工具的稳定性和准确性。
12. 层次分析:处理多准则决策问题的方法。
13. 聚类分析:将数据分组,找出自然的类别或群体。
14. 神经网络:模拟人脑神经元结构的复杂模型,适用于非线性问题。
此外,书中还探讨了5W问题(What、Why、Where、Which、Who),即数据挖掘是什么、为什么使用、谁在使用、应用于哪些领域以及有哪些方法。最后,强调数据挖掘的目标是从海量数据中找到有价值的“金矿”,并以合适的地点、时间和方式呈现,为企业的决策提供支持。
这本书适合初学者入门,同时也为有一定基础的读者提供了深入学习的数据挖掘技术。通过学习这些内容,读者可以掌握数据挖掘的基本技能,运用到实际工作中去发现隐藏在数据背后的价值。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2021-07-14 上传
Mooa
- 粉丝: 17
- 资源: 29
最新资源
- CoreOS部署神器:configdrive_creator脚本详解
- 探索CCR-Studio.github.io: JavaScript的前沿实践平台
- RapidMatter:Web企业架构设计即服务应用平台
- 电影数据整合:ETL过程与数据库加载实现
- R语言文本分析工作坊资源库详细介绍
- QML小程序实现风车旋转动画教程
- Magento小部件字段验证扩展功能实现
- Flutter入门项目:my_stock应用程序开发指南
- React项目引导:快速构建、测试与部署
- 利用物联网智能技术提升设备安全
- 软件工程师校招笔试题-编程面试大学完整学习计划
- Node.js跨平台JavaScript运行时环境介绍
- 使用护照js和Google Outh的身份验证器教程
- PHP基础教程:掌握PHP编程语言
- Wheel:Vim/Neovim高效缓冲区管理与导航插件
- 在英特尔NUC5i5RYK上安装并优化Kodi运行环境