多幅图像中的仿射结构与运动估计

需积分: 9 4 下载量 125 浏览量 更新于2024-08-21 收藏 3.21MB PPT 举报
"本文主要探讨了从多幅图像中估计仿射结构和运动的技术,特别是在运动估计模型的应用上下文中。内容涵盖了仿射几何基础、仿射结构与图像间运动的关系,以及如何通过多视图恢复运动和投影结构。此外,还提到了弱标定和基于因子分解的方法,这些都是在处理非标定相机和动态场景时的关键技术。" 在多幅图像中估计仿射结构和运动是计算机视觉领域的一个重要任务,它涉及到从不同视角捕获的图像中恢复场景的几何信息。仿射几何基础是理解这一过程的关键,因为它忽略了尺度,但保留了平行性和比例关系,这在图像分析中非常有用。仿射空间是由点、向量空间和作用于这些点的变换组成的,其中仿射子空间可以通过一个点(原点)和一组基向量来定义,形成仿射坐标系。 在多幅图像中,如果存在已匹配的摄影点,可以从这些点的成像坐标中推断出结构和运动参数。运动估计模型通常用于求解摄像机的运动和场景点的三维坐标。给定多个摄像机的投影矩阵和匹配点坐标,可以建立一个方程系统来估计这些参数。当图像数量和匹配点足够多时,可以使用最小二乘法等优化算法来求解过定问题,从而获得准确的结构和运动估计。 仿射结构和两幅图像之间的运动关系是通过仿射变换来描述的,这种变换保持了线性比例和平行性,但不保持距离。对于多幅图像,可以利用仿射变换的共轭性来分解运动,这种方法有助于解决多视图几何问题。从仿射到欧氏图像的转换则涉及将仿射坐标映射到具有标定的欧氏坐标系统中,这在需要精确距离和角度信息的场合非常重要。 弱标定是指在没有完全标定摄像机参数的情况下进行三维重建,这在手持设备或不断变化的拍摄条件下常见。因子分解方法被用来处理这种复杂情况,通过分解投影矩阵来估计摄像机运动和场景结构。这种方法在处理图像序列时特别有效,可以生成不同视角的视图。 从多幅图像估计仿射结构和运动是通过利用仿射几何原理和多视图几何技术来实现的,这包括匹配点的坐标、投影矩阵的估计以及通过优化算法求解过定系统。这些方法在立体视觉、三维重建、图像融合等领域有着广泛的应用。