Manim图形编程实践教程:HelloWorld.py

版权申诉
0 下载量 68 浏览量 更新于2024-11-25 收藏 2KB ZIP 举报
资源摘要信息:"manim是一个用于创建数学动画的Python库。它可以帮助用户通过编程来创建几何图形,动画等。manim有几个内置的图形,例如圆、三角形、正方形等等,用户可以通过调用相应的函数来创建这些图形。此外,manim还提供了一系列的动画效果,可以用于图形的平移、旋转、缩放等操作。它被广泛用于数学和科学的教学和研究领域,帮助人们更直观的理解抽象的概念。" manim库中的图形函数主要包括以下几种: 1. Circle:创建一个圆形,可以指定圆的半径和位置。 2. Square:创建一个正方形,可以指定边长和位置。 3. Polygon:创建一个多边形,可以指定顶点的坐标。 4. Line:创建一条直线,可以指定起点和终点。 5. Arc:创建一个弧形,可以指定弧度、半径和位置。 在创建图形后,我们可以通过manim提供的动画效果来对图形进行操作。manim库中的动画效果主要包括以下几种: 1. Transform:将一个图形转换成另一个图形。 2. MoveToTarget:将一个图形移动到指定的目标位置。 3. FadeOut:使一个图形逐渐消失。 4. FadeIn:使一个图形逐渐出现。 5. Rotate:使一个图形绕着指定的轴旋转。 以上就是manim库中图形和动画效果的主要知识点。通过学习和练习,我们可以掌握如何使用manim库来创建数学动画。这对于理解和解释数学概念是非常有帮助的。

def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数,包括: - n: 取平均线和标准差的参数 - m: 标准差的倍数 - ma_n: MA指标的参数 - volatility_factor: 波动率因子,可以根据实际情况调整 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ n = int(para[0]) m = para[1] ma_n = int(para[2]) volatility_factor = para[3] # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal将以上代码的参数生成斐波那契数列的函数

153 浏览量

def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ # 策略参数 n = int(para[0]) # 取平均线和标准差的参数 m = para[1] # 标准差的倍数 ma_n = int(para[2]) # MA指标的参数 volatility_factor = 2 # 波动率因子,可以根据实际情况调整 # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal将这段代码加入名为'trading_strategy_para_list'的属性或函数

176 浏览量

import numpy as np from hyperopt import hp def trading_strategy(df, para): # 策略参数 n = int(para[0]) # 取平均线和标准差的参数 m = para[1] # 标准差的倍数 ma_n = para[2] # MA指标的参数 volatility_factor = 2 # 波动率因子,可以根据实际情况调整 # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 alpha = 2 / (ma_n + 1) llt = 0 for i in range(ma_n): llt += alpha * (close[-i-1] - llt) # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal # 定义参数范围 space = [ hp.quniform('n', 10, 50, 1), hp.uniform('m', 1, 3), hp.quniform('ma_n', 5, 30, 1), ]这段代码还有优化的地方吗

115 浏览量