def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数,包括: - n: 取平均线和标准差的参数 - m: 标准差的倍数 - ma_n: MA指标的参数 - volatility_factor: 波动率因子,可以根据实际情况调整 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ n = int(para[0]) m = para[1] ma_n = int(para[2]) volatility_factor = para[3] # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal将以上代码的参数生成斐波那契数列的函数

时间: 2024-02-14 12:17:13 浏览: 27
以下是将给定代码的参数生成斐波那契数列的函数修改后的代码: ``` def generate_fibonacci_sequence(start, end): """ 生成斐波那契数列 :param start: int, 起始位置 :param end: int, 终止位置 :return: list, 从起始位置到终止位置的斐波那契数列 """ fibonacci_sequence = [1, 1] while fibonacci_sequence[-1] < end: fibonacci_sequence.append(fibonacci_sequence[-1] + fibonacci_sequence[-2]) return fibonacci_sequence[start-1:-1] def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数,包括: - n: 取平均线和标准差的参数 - m: 标准差的倍数 - ma_n: MA指标的参数 - volatility_factor: 波动率因子,可以根据实际情况调整 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ n = int(para[0]) m = para[1] ma_n = int(para[2]) volatility_factor = para[3] # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal if signal != 0 else None if len(para) not in generate_fibonacci_sequence(2, 100) else 0 ``` 在修改后的代码中,我们在 `return` 语句中添加了一些逻辑,如果参数的长度不在生成的斐波那契数列中,直接返回 `None`;如果参数的长度在生成的斐波那契数列中,返回 `0`。这样就可以实现将参数限制在斐波那契数列中。我们使用 `generate_fibonacci_sequence(2, 100)` 函数生成了从第二个数到第 100 个数的斐波那契数列,然后在 `trading_strategy()` 函数中判断参数的长度是否在这个数列中即可。

相关推荐

def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ # 策略参数 n = int(para[0]) # 取平均线和标准差的参数 m = para[1] # 标准差的倍数 ma_n = int(para[2]) # MA指标的参数 volatility_factor = 2 # 波动率因子,可以根据实际情况调整 # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal将这段代码加入名为'trading_strategy_para_list'的属性或函数

根据上条的方法把以下代码修改后输出def trading_strategy(df, para): """ 根据给定的参数,计算交易信号 :param df: pandas.DataFrame, 包含股票价格数据的DataFrame :param para: list, 交易策略的参数 :return: int, 交易信号,1表示买入,-1表示卖出,0表示持有 """ # 策略参数 n = int(para[0]) # 取平均线和标准差的参数 m = para[1] # 标准差的倍数 ma_n = int(para[2]) # MA指标的参数 volatility_factor = 2 # 波动率因子,可以根据实际情况调整 # 计算均线和标准差 close = df['close'].values ma = np.mean(close[-n:]) std = np.std(close[-n:], ddof=1) # 计算上下轨道 upper = ma + volatility_factor * std lower = ma - volatility_factor * std # 计算MA指标 ma_values = df['close'].rolling(ma_n).mean().values ma_current = ma_values[-1] ma_previous = ma_values[-2] # 计算LLT指标 llt = np.zeros(ma_n) llt[0] = close[-1] alpha = 2 / (ma_n + 1) for i in range(1, ma_n): llt[i] = alpha * close[-i-1] + (1 - alpha) * llt[i-1] # 寻找交易信号 signal = 0 close_current = close[-1] close_previous = close[-2] # 做多信号 if (close_current > upper) and (close_previous <= upper) and \ (close_current > ma_current) and (close_previous <= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做多信号 if close_current < llt[-1]: signal = 0 else: signal = 1 # 做空信号 elif (close_current < lower) and (close_previous >= lower) and \ (close_current < ma_current) and (close_previous >= ma_previous) and (std < volatility_factor * ma_current): # LLT指标过滤做空信号 if close_current > llt[-1]: signal = 0 else: signal = -1 # 平仓信号 elif ((close_current < ma) and (close_previous >= ma)) or ((close_current > ma) and (close_previous <= ma)): signal = 0 return signal

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望