深度Q网络在车载边缘计算任务卸载中的应用
3星 · 超过75%的资源 需积分: 47 146 浏览量
更新于2024-09-03
8
收藏 793KB PDF 举报
"该文提出了一种基于深度Q网络(DQN)的车载边缘网络任务分发卸载算法,旨在优化车辆终端用户的任务执行时延、处理速率与能耗之间的平衡。通过层次分析法对车辆终端的计算任务进行优先级划分,并结合深度Q网络的边缘计算方法,构建任务卸载模型,最终形成基于DQN的最优任务卸载策略,以提升任务执行效率。"
在当前的车联网环境下,移动边缘计算(Mobile Edge Computing, MEC)成为解决车载终端计算需求的重要手段。由于车辆终端的计算能力有限且任务需求复杂多变,如何高效地分配和卸载计算任务成为一个挑战。文章提出的算法借鉴了强化学习中的深度Q网络(Deep Q-Network, DQN),这是一种能够处理高维度状态空间的Q学习变体,特别适合处理复杂环境下的决策问题。
首先,算法运用层次分析法(Analytic Hierarchy Process, AHP)对来自不同车辆终端的计算任务进行优先级划分。AHP是一种结构化决策工具,它通过比较和综合多个因素来确定任务的相对重要性,为任务处理速率赋予不同的权重,为后续的决策提供依据。
接着,结合深度Q网络,设计了任务卸载模型。深度Q网络利用神经网络作为Q函数的近似器,能够更准确地预测未来的奖励,以优化任务处理速率的加权和。在边缘节点上,计算任务被卸载到具有更高计算能力的服务器,以提高处理速度并降低终端的能耗。
最后,建立了基于DQN的车辆终端自主最优任务卸载策略。这个策略允许车辆终端根据实时网络条件、计算资源和任务特性自主做出卸载决策,以最大化长期的效用。通过不断学习和更新Q值表,DQN算法能适应环境变化,使得卸载决策更加智能和高效。
仿真结果表明,相比于传统的Q学习算法,基于DQN的算法能显著提高任务执行效率,减少延迟并优化能源消耗。这验证了DQN在车联网环境中的优越性,对于提高车联网服务质量、提升用户体验有着重要的实际应用价值。
关键词:车联网,移动边缘计算,计算卸载,深度Q网络,计算速率。这些关键词突出了研究的核心领域和技术手段,表明该研究工作对于理解如何利用边缘计算优化车联网环境中的计算任务管理具有重要意义。
点击了解资源详情
点击了解资源详情
点击了解资源详情
2022-05-31 上传
2024-07-09 上传
2024-10-21 上传
2024-10-01 上传
2021-08-18 上传
2022-12-15 上传
weixin_38626080
- 粉丝: 8
- 资源: 973
最新资源
- JHU荣誉单变量微积分课程教案介绍
- Naruto爱好者必备CLI测试应用
- Android应用显示Ignaz-Taschner-Gymnasium取消课程概览
- ASP学生信息档案管理系统毕业设计及完整源码
- Java商城源码解析:酒店管理系统快速开发指南
- 构建可解析文本框:.NET 3.5中实现文本解析与验证
- Java语言打造任天堂红白机模拟器—nes4j解析
- 基于Hadoop和Hive的网络流量分析工具介绍
- Unity实现帝国象棋:从游戏到复刻
- WordPress文档嵌入插件:无需浏览器插件即可上传和显示文档
- Android开源项目精选:优秀项目篇
- 黑色设计商务酷站模板 - 网站构建新选择
- Rollup插件去除JS文件横幅:横扫许可证头
- AngularDart中Hammock服务的使用与REST API集成
- 开源AVR编程器:高效、低成本的微控制器编程解决方案
- Anya Keller 图片组合的开发部署记录