应用DQN解决边缘计算中计算卸载和资源分配问题,如何画出分别在用户设备为10,20,30时的能耗变化折线图,给出基于pytorch的代码
时间: 2024-10-01 20:06:13 浏览: 36
人工智能-项目实践-强化学习-基于深度强化学习的MEC计算卸载与资源分配.zip
5星 · 资源好评率100%
首先,我们需要了解DQN(Deep Q-Network)是一种基于深度学习的强化学习算法,用于解决边缘计算中的计算卸载和资源分配问题。为了画出在不同用户设备数量下的能耗变化折线图,我们需要先训练一个DQN模型,然后使用该模型进行资源分配,并记录每个场景下的能耗数据。最后,我们可以使用matplotlib库绘制折线图。
以下是基于PyTorch的代码示例:
1. 导入所需库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
```
2. 定义DQN网络结构:
```python
class DQN(nn.Module):
def __init__(self, input_size, output_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
3. 训练DQN模型:
```python
# 初始化参数
input_size = 10 # 输入特征数量,例如任务大小、设备能力等
output_size = 5 # 输出动作数量,例如选择哪个设备进行计算卸载
num_episodes = 1000 # 训练回合数
learning_rate = 0.001
gamma = 0.99 # 折扣因子
epsilon = 1.0 # 探索率
epsilon_decay = 0.995
target_update_freq = 100 # 目标网络更新频率
# 初始化网络和优化器
policy_net = DQN(input_size, output_size)
target_net = DQN(input_size, output_size)
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.Adam(policy_net.parameters(), lr=learning_rate)
# 训练过程
for episode in range(num_episodes):
# 获取当前状态(例如任务队列、设备状态等)
state = get_current_state()
done = False
while not done:
# 选择动作
if np.random.rand() < epsilon:
action = np.random.randint(output_size)
else:
with torch.no_grad():
state_tensor = torch.tensor(state, dtype=torch.float32)
action = policy_net(state_tensor).argmax().item()
# 执行动作,观察新状态和奖励
next_state, reward, done = take_action(action)
# 更新策略网络
state_tensor = torch.tensor(state, dtype=torch.float32)
next_state_tensor = torch.tensor(next_state, dtype=torch.float32)
reward_tensor = torch.tensor(reward, dtype=torch.float32)
target_q_values = target_net(next_state_tensor).detach()
target_q_value = reward_tensor + gamma * target_q_values.max()
predicted_q_value = policy_net(state_tensor)[action]
loss = (predicted_q_value - target_q_value).pow(2)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 更新状态
state = next_state
# 更新探索率和目标网络
if episode % target_update_freq == 0:
target_net.load_state_dict(policy_net.state_dict())
epsilon *= epsilon_decay
```
4. 使用训练好的DQN模型进行资源分配,并记录能耗数据:
```python
def simulate_resource_allocation(devices):
energy_consumptions = []
for device in devices:
阅读全文