研华AMAX-175X系列用户手册:运动控制解决方案

需积分: 9 0 下载量 115 浏览量 更新于2024-07-16 收藏 1.28MB PDF 举报
"AMAX-175X系列是研华公司出品的一款轴控卡,主要应用于运动控制领域。用户手册包含两大部分,分别是简介和硬件详细功能介绍。AMAX-175X系列支持OpenFrame Type 32-ch AMONet和RS-485隔离数字I/O从机模块。产品手册提供了关于该系列产品的准确和可靠信息,但Advantech公司不承担因使用手册信息导致的任何侵权责任。此外,手册中提及的AMONet、AMAX-1752、AMAX-1754和AMAX-1756是研华公司的商标,而Intel和Pentium是Intel公司的商标,Microsoft Windows和MS-DOS是微软公司的注册商标。研华公司为该产品提供两年的产品保修服务。" 详细知识点: 1. **AMAX-175X系列轴控卡**:这是研华公司推出的一系列轴控卡,主要用于运动控制系统,能够实现精确的电机控制和复杂的运动路径规划。 2. **OpenFrame Type 32-ch AMONet**:这表明AMAX-175X系列支持OpenFrame结构,是一种开放式框架设计,可提供32通道的AMONet接口。AMONet可能是研华公司的专有通信协议,用于设备间的高效数据传输和协调。 3. **RS-485隔离数字I/O从机模块**:RS-485是一种工业标准串行通信接口,具有良好的抗干扰性和远距离传输能力。隔离数字I/O模块意味着输入和输出端口之间有电气隔离,能防止电源故障或电磁干扰对系统其他部分的影响。 4. **用户手册结构**:手册分为简介和硬件详细功能介绍两部分,简介可能包含产品概述、特点和基本操作,而硬件详细功能介绍则深入讲解硬件组件、接口、配置和设置方法。 5. **版权和法律声明**:Advantech保留随时改进产品而不预先通知的权利,并强调未经许可,不得复制、翻译或传播手册内容。此外,Advantech不对因使用手册信息导致的第三方权利侵犯承担责任。 6. **商标和品牌**:AMONet、AMAX-1752、AMAX-1754和AMAX-1756是研华公司的商标,强调了其知识产权。同时,手册提及其他知名品牌的商标,如Intel、Pentium、Microsoft Windows和MS-DOS,这些都是其各自所有者的财产。 7. **产品保修**:研华公司为AMAX-175X系列提供两年的保修服务,这意味着在保修期内,如果产品出现非人为损坏,公司将负责修理或更换。 AMAX-175X系列轴控卡是研华公司在运动控制领域的专业解决方案,用户手册为用户提供全面的产品信息和支持,帮助用户理解和操作这些高性能的控制卡。

解释:def conjugate_gradient(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the conjugate gradient algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 xk = x0 # Sets the initial step guess to dx ~ 1 old_old_fval = old_fval + np.linalg.norm(gfk) / 2 pk = -gfk x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) sigma_3 = 0.01 while (gnorm > tol) and (k < iterations): deltak = np.dot(gfk, gfk) cached_step = [None] def polak_ribiere_powell_step(alpha, gfkp1=None): xkp1 = xk + alpha * pk if gfkp1 is None: gfkp1 = grad(xkp1) yk = gfkp1 - gfk beta_k = max(0, np.dot(yk, gfkp1) / deltak) pkp1 = -gfkp1 + beta_k * pk gnorm = np.amax(np.abs(gfkp1)) return (alpha, xkp1, pkp1, gfkp1, gnorm) def descent_condition(alpha, xkp1, fp1, gfkp1): # Polak-Ribiere+ needs an explicit check of a sufficient # descent condition, which is not guaranteed by strong Wolfe. # # See Gilbert & Nocedal, "Global convergence properties of # conjugate gradient methods for optimization", # SIAM J. Optimization 2, 21 (1992). cached_step[:] = polak_ribiere_powell_step(alpha, gfkp1) alpha, xk, pk, gfk, gnorm = cached_step # Accept step if it leads to convergence. if gnorm <= tol: return True # Accept step if sufficient descent condition applies. return np.dot(pk, gfk) <= -sigma_3 * np.dot(gfk, gfk) try: alpha_k, fc, gc, old_fval, old_old_fval, gfkp1 = \ _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, c2=0.4, amin=1e-100, amax=1e100, extra_condition=descent_condition) except _LineSearchError: break # Reuse already computed results if possible if alpha_k == cached_step[0]: alpha_k, xk, pk, gfk, gnorm = cached_step else: alpha_k, xk, pk, gfk, gnorm = polak_ribiere_powell_step(alpha_k, gfkp1) k += 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

2023-06-06 上传

解释:def steepest_descent(fun, grad, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the steepest descent algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None grad_val = None x_log = [] y_log = [] grad_log = [] x0 = asarray(x0).flatten() # iterations = len(x0) * 200 old_fval = fun(x0) gfk = grad(x0) k = 0 old_old_fval = old_fval + np.linalg.norm(gfk) / 2 xk = x0 x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) gnorm = np.amax(np.abs(gfk)) while (gnorm > tol) and (k < iterations): pk = -gfk try: alpha, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(fun, grad, xk, pk, gfk, old_fval, old_old_fval, amin=1e-100, amax=1e100) except _LineSearchError: break xk = xk + alpha * pk k += 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) x_log = np.append(x_log, xk.T) y_log = np.append(y_log, fun(xk)) if (gnorm <= tol): break fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

2023-06-06 上传

解释:def levenberg_marquardt(fun, grad, jacobian, x0, iterations, tol): """ Minimization of scalar function of one or more variables using the Levenberg-Marquardt algorithm. Parameters ---------- fun : function Objective function. grad : function Gradient function of objective function. jacobian :function function of objective function. x0 : numpy.array, size=9 Initial value of the parameters to be estimated. iterations : int Maximum iterations of optimization algorithms. tol : float Tolerance of optimization algorithms. Returns ------- xk : numpy.array, size=9 Parameters wstimated by optimization algorithms. fval : float Objective function value at xk. grad_val : float Gradient value of objective function at xk. grad_log : numpy.array The record of gradient of objective function of each iteration. """ fval = None # y的最小值 grad_val = None # 梯度的最后一次下降的值 x_log = [] # x的迭代值的数组,n*9,9个参数 y_log = [] # y的迭代值的数组,一维 grad_log = [] # 梯度下降的迭代值的数组 x0 = asarray(x0).flatten() if x0.ndim == 0: x0.shape = (1,) # iterations = len(x0) * 200 k = 1 xk = x0 updateJ = 1 lamda = 0.01 old_fval = fun(x0) gfk = grad(x0) gnorm = np.amax(np.abs(gfk)) J = [None] H = [None] while (gnorm > tol) and (k < iterations): if updateJ == 1: x_log = np.append(x_log, xk.T) yk = fun(xk) y_log = np.append(y_log, yk) J = jacobian(x0) H = np.dot(J.T, J) H_lm = H + (lamda * np.eye(9)) gfk = grad(xk) pk = - np.linalg.inv(H_lm).dot(gfk) pk = pk.A.reshape(1, -1)[0] # 二维变一维 xk1 = xk + pk fval = fun(xk1) if fval < old_fval: lamda = lamda / 10 xk = xk1 old_fval = fval updateJ = 1 else: updateJ = 0 lamda = lamda * 10 gnorm = np.amax(np.abs(gfk)) k = k + 1 grad_log = np.append(grad_log, np.linalg.norm(xk - x_log[-1:])) fval = old_fval grad_val = grad_log[-1] return xk, fval, grad_val, x_log, y_log, grad_log

2023-06-06 上传