内质网应激诱导肝星状细胞凋亡的钙依赖机制

0 下载量 9 浏览量 更新于2024-09-09 收藏 760KB PDF 举报
"内质网应激诱导肝星状细胞凋亡通过钙介导的JNK/P38 MAPK和钙蛋白酶/Caspase-12通路" 文章标题揭示了一个重要的生物学过程,即内质网应激(Endoplasmic Reticulum Stress, ER Stress)在肝星状细胞(Hepatic Stellate Cells, HSCs)凋亡中的作用,该过程通过钙离子(Calcium)调控的JNK/P38 MAPK(Jun N-terminal Kinase / P38 Mitogen-Activated Protein Kinase)和钙蛋白酶/Caspase-12途径进行。ER是细胞内一个复杂的膜系统,主要负责蛋白质折叠和质量控制。当ER内的蛋白质折叠平衡被破坏,如由于大量未正确折叠的蛋白质积累,就会引发ER应激。 首先,ER应激导致钙离子稳态失衡。正常情况下,ER维持细胞内钙离子浓度,但在ER应激时,钙离子可能从ER释放到细胞质中,造成钙离子浓度上升。这种钙离子的异常分布被认为可以激活一系列信号转导事件。 接着,释放的钙离子激活了JNK/P38 MAPK信号通路。这两个蛋白激酶是细胞应激反应的关键分子,它们可以被多种应激因素激活,包括氧化应激、炎症和细胞外钙离子浓度增加。一旦被激活,JNK和P38可以磷酸化多种底物,从而触发细胞的凋亡程序,尤其是参与细胞周期调控和凋亡的蛋白质。 此外,钙离子还能激活钙蛋白酶系统,特别是Caspase-12,这是一种位于内质网膜上的凋亡启动因子。在ER应激下,钙蛋白酶会被激活,进一步切割并激活Caspase-12,这标志着细胞凋亡的开始。Caspase-12的激活会启动级联反应,最终导致细胞程序性死亡。 文章描述的这个过程对于理解肝纤维化的逆转具有重要意义。HSCs在肝纤维化发展中起着核心作用,它们在肝损伤时活化并转化为肌成纤维细胞样细胞,产生大量的胶原纤维。当ER应激诱导这些细胞凋亡,可以减少纤维化的进展,有助于肝脏修复和功能恢复。 标签“首发论文”表明这是对这一主题的原创性研究,可能包含了新的发现或实验数据。作者们进行了深入的研究,可能包括细胞培养、蛋白质分析、信号通路的检测以及可能的干预策略,以探索ER应激如何具体触发HSCs的凋亡,并且可能寻找了抑制纤维化进程的方法。 这篇论文深入探讨了内质网应激在肝纤维化进程中通过钙离子依赖的信号通路影响HSCs命运的机制,这对于开发治疗肝纤维化的新型疗法提供了理论依据。

Rab GTPases serve as master regulators of membrane trafficking. They can be activated by guanine nucleotide exchange factors (GEF) and be inactivated by GTPase-activating proteins (GAPs). The roles of some GAPs have been explored in Saccharomyces cerevisiae, but are largely unknown in filamentous fungi. Here, we investigated the role of GAP Gyp3 gene, an ortholog of S. cerevisiae Gyp3, in an entomopathogenic fungus, Metarhizium acridum. We found that MaGyp3 is mainly localized to the endoplasmic reticulum (ER) of vegetative hyphae, nuclei of mature conidia, and both ER and nuclei in invasive hyphae. Lack of MaGyp3 caused a decreased tolerance to hyperosmotic stress, heat-shock and UV-B radiation. Moreover, the ΔMaGyp3 mutant showed a significantly decreased pathogenicity owing to delayed germination, reduced appressorium-mediated penetration and impaired invasive growth. Loss of MaGyp3 also caused impaired fungal growth, advanced conidiation and defects in utilization of carbon and nitrogen sources, while overexpression of MaGyp3 exhibited delayed conidiation on nutrient-rich medium and conidiation pattern shift from microcycle conidiation to normal conidiation on nutrient-limited medium. Mavib-1, a tanscription factor invloved in conidiation by affecting nutrient utilizaiton, can directly bind to the promoter of MaGyp3. ΔMaGyp3 and ΔMavib-1 mutants shared similar phenotypes, and overexpression mutants of MaGyp3 and Mavib-1 (Mavib-1-OE) exhibited similar phenotypes in growth, conidiation and pathogenicity. Reintroduction of the Magyp3 driven by strong promoter gpd in ΔMavib-1 mutant recovered the defects in growth and conidiation for dysfunction of Mavib1. Taken together, our findings uncovered the role of GAP3 in a filamentous pathogenic fungus and and illustrated the upstream regulatory mechanism by direct interaction with Mavib-1.请用nature杂志的风格润色成学术论文的形式。

2023-02-10 上传