基于MATLAB的系统时域响应分析——毕业论文研究
102 浏览量
更新于2024-01-29
收藏 195KB DOC 举报
本文基于matlab对系统的时域响应进行了深入分析和研究。时域响应分析是衡量控制系统性能的重要指标之一,在时间域内求解系统的微分方程,并绘制系统的响应曲线以分析系统的性能和各主要参数对系统性能的影响。系统的时域响应一般指阶跃响应和脉冲响应,通过列出微分方程组,取拉普拉斯变换得到系统传递函数,再根据图形进行系统分析。利用MATLAB软件提供的时域响应分析函数可以方便、快捷地观察系统的输出是否满足要求,得出系统传递函数的上升时间、调节时间、超调量和稳态误差等参数。本文选取的系统经过MATLAB软件进行系统仿真后,得到系统的输出函数,可以直观地观察系统状态量的变化情况。关键词:MATLAB软件;系统时域响应分析;系统的响应曲线。 Through in-depth analysis and research, this paper based on matlab has carried out the time domain response analysis of the system. Time domain response analysis is one of the important indicators to measure the performance of control system. It solves the differential equation of the system in the time domain, and plots the response curve of the system to analyze the performance of the system and the influence of the main parameters on the performance of the system. The time domain response of the system generally refers to the step response and the impulse response. By listing the differential equation group, taking the Laplace transform of both sides of the equation to obtain the system transfer function, and then conducting system analysis based on the plotted graph. Using the time domain response analysis function provided by MATLAB software, it can conveniently and quickly observe whether the system output meets the requirements, and obtain parameters such as the rise time, settling time, overshoot, and steady-state error of the system transfer function. The system selected for this comprehensive practice, after system simulation using MATLAB software, obtained the output function of the system, which can intuitively observe the change of system state variables. Keywords: MATLAB software; system time domain response analysis; system response curve.
2022-07-06 上传
2023-07-10 上传
2023-07-10 上传
2023-06-30 上传
2023-07-10 上传
2023-07-09 上传
2021-10-03 上传
智慧安全方案
- 粉丝: 3817
- 资源: 59万+
最新资源
- Raspberry Pi OpenCL驱动程序安装与QEMU仿真指南
- Apache RocketMQ Go客户端:全面支持与消息处理功能
- WStage平台:无线传感器网络阶段数据交互技术
- 基于Java SpringBoot和微信小程序的ssm智能仓储系统开发
- CorrectMe项目:自动更正与建议API的开发与应用
- IdeaBiz请求处理程序JAVA:自动化API调用与令牌管理
- 墨西哥面包店研讨会:介绍关键业绩指标(KPI)与评估标准
- 2014年Android音乐播放器源码学习分享
- CleverRecyclerView扩展库:滑动效果与特性增强
- 利用Python和SURF特征识别斑点猫图像
- Wurpr开源PHP MySQL包装器:安全易用且高效
- Scratch少儿编程:Kanon妹系闹钟音效素材包
- 食品分享社交应用的开发教程与功能介绍
- Cookies by lfj.io: 浏览数据智能管理与同步工具
- 掌握SSH框架与SpringMVC Hibernate集成教程
- C语言实现FFT算法及互相关性能优化指南