深度解析:迁移学习的领域划分与应用策略

4星 · 超过85%的资源 需积分: 42 1.6k 下载量 61 浏览量 更新于2024-09-10 15 收藏 431KB DOCX 举报
迁移学习是一门研究如何在一个数据域(domain)中学习的知识或模型应用于另一个相关但不同的数据域的任务(task)中的计算机科学分支。本文档首先对迁移学习的基本概念进行了阐述。 数据域由特征空间χ和边缘概率分布P(X)构成,特征空间代表数据的特征表示,如在文本分类中,每个单词的二值特征表示(出现或不出现)。源数据域Ds与目标数据域Dt之间的差异可能体现在特征空间χ(如不同语言的文本)或边缘概率分布Ps(X)(如词汇使用的频率差异)上。 任务则是通过标签空间У和预测函数ƒ(X)来定义,如文本分类中的标签集合和文本分类的概率。源任务Ts与目标任务Tt的不匹配可能源于标签集合的差异、预测函数的要求不同(例如,源任务为二分类,而目标任务为多分类)或数据集中类别分布的不平衡。 迁移学习根据源和目标领域的相似性可分为几种类型: 1. 归纳式迁移学习:当源数据域拥有大量标签数据时,类似于多任务学习,可以利用已有的标签信息进行学习;若源数据域无标签,即为无标签源数据的自我学习,也称为半监督迁移学习。 2. 直推式迁移学习:针对特征空间χs与χt的不同(例如,不同的编码方式),或者特征空间相同但边缘分布不同(如Covariate Shift,数据分布变化),可以采用域适应或样本选择策略来调整模型。 3. 无监督迁移学习:在这种情况下,既没有标签信息也没有明确的特征空间差异,通常依赖于数据的内在结构或潜在的共享信息进行学习。 文档还提及了国内外迁移学习的发展现状,强调了归纳式迁移学习在大量标签数据支持下的应用价值,以及无监督迁移学习作为未来研究热点的前景。迁移学习是一个灵活且具有挑战性的领域,它旨在通过跨领域知识转移来提高目标任务的性能,尤其在数据稀缺的情况下,对提升机器学习模型的泛化能力具有重要意义。
2020-02-29 上传
Abstract—Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.