Python自然语言处理实践指南:NLTK中文翻译

5星 · 超过95%的资源 需积分: 20 99 下载量 195 浏览量 更新于2024-07-23 2 收藏 4.28MB PDF 举报
"本书是《PYTHON自然语言处理》的中文翻译版,主要介绍自然语言处理的基础知识和实践经验,特别适合初学者。书中涵盖了NLTK(Natural Language Toolkit)的使用,包括数据预处理、特征提取、模型训练和测试等多个步骤,旨在帮助读者掌握处理非结构化文本的Python编程技巧。此外,书中的数据集丰富多样,涉及多种语言学数据结构,让读者能够深入理解文本分析的算法。译者强调动手实践的重要性,认为这是真正理解自然语言处理概念的关键。本书鼓励读者参与中文化的进程,为中文自然语言处理领域贡献力量。" 《PYTHON自然语言处理中文翻译 NLTK Natural Language Processing with Python 中文版》是针对自然语言处理的实践教程,适合初学者入门。该书由Steven Bird、Ewan Klein和Edward Loper合著,中文版由陈涛翻译。书中的内容不仅理论基础扎实,更注重实践操作,帮助读者从实际项目中理解模型的概念,如数据预处理、特征提取、模型训练和测试。书中提到,只有通过实际操作,才能真正领会模型在自然语言处理中的作用,以及如何运用算法处理语言数据。 NLTK是Python中的一个强大库,专为自然语言处理提供工具和支持。本书通过NLTK教授读者如何处理非结构化的文本,如电子邮件过滤、自动文本摘要和机器翻译等应用场景。学习NLTK可以帮助开发者构建处理大量文本的程序,同时,丰富的标注数据集有助于理解和应用语言学的各种数据结构,如词汇、语法和语义结构。 书中的案例和练习覆盖了语言学的重要概念,如动词的配价、词语搭配和逻辑约束。通过实际操作这些概念,读者可以加深对自然语言处理理论的理解。译者建议,虽然中文翻译有助于快速阅读,但直接阅读英文原著更能把握作者的意图,尤其是对于那些需要精确理解的专业术语。 译者呼吁读者积极参与书中的实践环节,并欢迎对翻译和内容提出建议,期待更多人加入到中文自然语言处理的发展中。此外,本书允许非商业性的学习和研究使用,但对于商业用途,应与原版权持有者联系。译者不承担由此产生的法律责任。 这本书是学习自然语言处理的宝贵资源,不仅介绍了基本理论,更提供了丰富的实践指导,帮助读者逐步掌握这一领域的核心技能。通过这本书,读者可以深入理解NLTK的功能和使用,以及如何利用Python进行有效的自然语言处理。
2017-08-11 上传
Python Natural Language Processing by Jalaj Thanaki English | 31 July 2017 | ISBN: 1787121429 | ASIN: B072B8YWCJ | 486 Pages | AZW3 | 11.02 MB Key Features Implement Machine Learning and Deep Learning techniques for efficient natural language processing Get started with NLTK and implement NLP in your applications with ease Understand and interpret human languages with the power of text analysis via Python Book Description This book starts off by laying the foundation for Natural Language Processing and why Python is one of the best options to build an NLP-based expert system with advantages such as Community support, availability of frameworks and so on. Later it gives you a better understanding of available free forms of corpus and different types of dataset. After this, you will know how to choose a dataset for natural language processing applications and find the right NLP techniques to process sentences in datasets and understand their structure. You will also learn how to tokenize different parts of sentences and ways to analyze them. During the course of the book, you will explore the semantic as well as syntactic analysis of text. You will understand how to solve various ambiguities in processing human language and will come across various scenarios while performing text analysis. You will learn the very basics of getting the environment ready for natural language processing, move on to the initial setup, and then quickly understand sentences and language parts. You will learn the power of Machine Learning and Deep Learning to extract information from text data. By the end of the book, you will have a clear understanding of natural language processing and will have worked on multiple examples that implement NLP in the real world. What you will learn Focus on Python programming paradigms, which are used to develop NLP applications Understand corpus analysis and different types of data attribute. Learn NLP using Python libraries such as NLTK, Polyglot,