![](https://csdnimg.cn/release/download_crawler_static/12314127/bg3.jpg)
Python数据科学
速查表
DataCamp
Learn Python for Data Science Interactively
数据
参阅 NumPy, Pandas & Scikit-Learn
Keras是强大、易用的深度学习库,基于Theano和TensorFlow提供
了高阶神经网络API,用于开发和评估深度学习模型。
模型架构
模型微调
参数优化
>>> from keras.optimizers import RMSprop
>>> opt = RMSprop(lr=0.0001, decay=1e-6)
>>>
model2.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
示例
>>> import numpy as np
>>> from keras.models import Sequential
>>> from keras.layers import Dense
>>> data = np.random.random((1000,100))
>>> labels = np.random.randint(2,size=(1000,1))
>>> model = Sequential()
>>> model.add(Dense(32,
activation='relu',
input_dim=100))
>>> model.add(Dense(1, activation='sigmoid'))
>>> model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
>>> model.t(data,labels,epochs=10,batch_size=32)
>>> predictions = model.predict(data)
预处理
独热编码
>>> from keras.utils import to_categorical
>>> Y_train = to_categorical(y_train, num_classes)
>>> Y_test = to_categorical(y_test, num_classes)
>>> Y_train3 = to_categorical(y_train3, num_classes)
>>> Y_test3 = to_categorical(y_test3, num_classes)
参阅 NumPy 与 Scikit-Learn
>>> model.output_shape
>>> model.summary()
>>> model.get_cong()
>>> model.get_weights()
模型输出形状
模型摘要展示
模型配置
列出模型的所有权重张量
数据要存为 NumPy 数组或数组列表,使用 sklearn.cross_validation
的 train_test_split 模块进行分割将数据分割为训练集与测试集。
早停法
>>> from keras.callbacks import EarlyStopping
>>> early_stopping_monitor = EarlyStopping(patience=2)
>>> model3.t(x_train4,
y_train4,
batch_size=32,
epochs=15,
validation_data=(x_test4,y_test4),
callbacks=[early_stopping_monitor])
审视模型
序贯模型
>>> from keras.models import Sequential
>>> model = Sequential()
>>> model2 = Sequential()
>>> model3 = Sequential()
多层感知器(MLP)
>>> from keras.layers import Dropout
>>> model.add(Dense(512,activation='relu',input_shape=(784,)))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(512,activation='relu'))
>>> model.add(Dropout(0.2))
>>> model.add(Dense(10,activation='softmax'))
标准化/归一化
序列填充
>>> from keras.preprocessing import sequence
>>> x_train4 = sequence.pad_sequences(x_train4,maxlen=80)
>>> x_test4 = sequence.pad_sequences(x_test4,maxlen=80)
>>> from sklearn.preprocessing import StandardScaler
>>> scaler = StandardScaler().t(x_train2)
>>> standardized_X = scaler.transform(x_train2)
>>> standardized_X_test = scaler.transform(x_test2)
Keras 数据集
>>> from keras.datasets import boston_housing,
mnist,
cifar10,
imdb
>>> (x_train,y_train),(x_test,y_test) = mnist.load_data()
>>> (x_train2,y_train2),(x_test2,y_test2) = boston_housing.load_data()
>>> (x_train3,y_train3),(x_test3,y_test3) = cifar10.load_data()
>>> (x_train4,y_train4),(x_test4,y_test4) = imdb.load_data(num_words=20000)
>>> num_classes = 10
卷积神经网络(CNN)
>>> from keras.layers import Activation,Conv2D,MaxPooling2D,Flatten
>>> model2.add(Conv2D(32,(3,3),padding='same',input_shape=x_train.shape[1:]))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(32,(3,3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))
>>> model2.add(Conv2D(64,(3,3), padding='same'))
>>> model2.add(Activation('relu'))
>>> model2.add(Conv2D(64,(3, 3)))
>>> model2.add(Activation('relu'))
>>> model2.add(MaxPooling2D(pool_size=(2,2)))
>>> model2.add(Dropout(0.25))
>>> model2.add(Flatten())
>>> model2.add(Dense(512))
>>> model2.add(Activation('relu'))
>>> model2.add(Dropout(0.5))
>>> model2.add(Dense(num_classes))
>>> model2.add(Activation('softmax'))
递归神经网络(RNN)
编译模型
多层感知器:二进制分类
>>> model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
多层感知器:多级分类
>>> model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
多层感知器:回归
>>> model.compile(optimizer='rmsprop',
loss='mse',
metrics=['mae'])
>>> from keras.klayers import Embedding,LSTM
>>> model3.add(Embedding(20000,128))
>>> model3.add(LSTM(128,dropout=0.2,recurrent_dropout=0.2))
>>> model3.add(Dense(1,activation='sigmoid'))
预测
评估模型性能
>>> score = model3.evaluate(x_test,
y_test,
batch_size=32)
>>> model3.predict(x_test4, batch_size=32)
>>> model3.predict_classes(x_test4,batch_size=32)
模型训练
>>> model3.t(x_train4,
y_train4,
batch_size=32,
epochs=15,
verbose=1,
validation_data=(x_test4,y_test4))
>>> from keras.models import load_model
>>> model3.save('model_le.h5')
>>> my_model = load_model('my_model.h5')
保存/加载模型
>>> from keras.layers import Dense
>>> model.add(Dense(12,
input_dim=8,
kernel_initializer='uniform',
activation='relu'))
>>> model.add(Dense(8,kernel_initializer='uniform',activation='relu'))
>>> model.add(Dense(1,kernel_initializer='uniform',activation='sigmoid'))
>>> model.add(Dense(64,activation='relu',input_dim=train_data.shape[1]))
>>> model.add(Dense(1))
二进制分类
多级分类
回归
其它
>>> from urllib.request import urlopen
>>> data = np.loadtxt(urlopen("http://archive.ics.uci.edu/
ml/machine-learning-databases/pima-indians-diabetes/
pima-indians-diabetes.data"),delimiter=",")
>>> X = data[:,0:8]
>>> y = data [:,8]
>>> from sklearn.model_selection import train_test_split
>>> X_train5,X_test5,y_train5,y_test5 = train_test_split(X,
y,
test_size=0.33,
random_state=42)
训练与测试集
递归神经网络
>>> model3.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
原文作者
呆鸟 译
Keras
天善智能 商业智能与大数据社区
www.hellobi.com
Keras