改进的FPFH-ICP点云配准算法:提升精度与鲁棒性
5星 · 超过95%的资源 23 浏览量
更新于2024-08-28
6
收藏 5.83MB PDF 举报
"一种改进的基于快速点特征直方图的ICP点云配准算法"
本文介绍了一种针对传统迭代最近点(ICP)算法的优化策略,旨在解决其鲁棒性差和配准精度低的问题。该方法是通过结合快速点特征直方图(FPFH)和一系列改进措施实现的。点云配准是计算机视觉和机器学习领域中的关键任务,尤其是在3D重建和机器人定位等应用中。
首先,文章提到了改进的内部形态描述子和法向矢量角变化的结合,用于点云特征的提取。这一步骤能够提升点云数据的描述能力,帮助算法更好地识别和匹配点云中的关键结构。法向矢量信息对于理解点云表面的几何特性至关重要,而内部形态描述子则有助于捕捉形状的细节特征。
接着,文章引入了指数函数优化的欧氏距离,作为FPFH算法的权重系数。优化后的欧氏距离能更好地适应不同距离下的点对匹配,确保在初始对齐阶段就能获得更精确的点云位置估计。这种权重分配方式可以增强特征点描述的准确性,从而改善后续的配准效果。
在初始配准阶段,论文采用了双重约束和单位四元数算法。这种双重约束可以确保配准的稳定性和精度,而单位四元数则用于表示旋转,它能有效避免旋转角的域问题,提高计算效率和精度。
最后,为了进一步优化ICP算法,研究人员构建了双向k维树,并根据点对的欧氏距离与最大欧氏距离的比值来计算权重。这些权重被用作ICP迭代误差函数的加权系数,以此减少不良对应关系对配准的影响,同时降低迭代次数,提高运行速度。
实验结果显示,该改进算法相比传统的ICP算法,配准精度提高了2到6个量级,显著提升了鲁棒性。这意味着即使在噪声较大或匹配条件较差的情况下,该算法也能保持较高的配准质量,这对于实际应用具有重要意义。
总结来说,本文提出的方法通过改进特征提取、距离权重优化、初始配准策略以及迭代过程中的权重计算,成功地提升了ICP点云配准的精度和稳定性,为3D点云处理提供了一种更为高效和可靠的解决方案。
2020-02-24 上传
2021-02-04 上传
2021-02-04 上传
2021-09-10 上传
2021-01-26 上传
2021-05-04 上传
2021-01-26 上传
点击了解资源详情
weixin_38722891
- 粉丝: 6
- 资源: 884
最新资源
- Haskell编写的C-Minus编译器针对TM架构实现
- 水电模拟工具HydroElectric开发使用Matlab
- Vue与antd结合的后台管理系统分模块打包技术解析
- 微信小游戏开发新框架:SFramework_LayaAir
- AFO算法与GA/PSO在多式联运路径优化中的应用研究
- MapleLeaflet:Ruby中构建Leaflet.js地图的简易工具
- FontForge安装包下载指南
- 个人博客系统开发:设计、安全与管理功能解析
- SmartWiki-AmazeUI风格:自定义Markdown Wiki系统
- USB虚拟串口驱动助力刻字机高效运行
- 加拿大早期种子投资通用条款清单详解
- SSM与Layui结合的汽车租赁系统
- 探索混沌与精英引导结合的鲸鱼优化算法
- Scala教程详解:代码实例与实践操作指南
- Rails 4.0+ 资产管道集成 Handlebars.js 实例解析
- Python实现Spark计算矩阵向量的余弦相似度