ind=[re.search('星期六|星期日',str(i)) !=None for i in media3['星期']] freeday=media3.loc[ind,:] workday=media3.loc[[ind[i]==False for i in range(len(ind))],:] m1=pd.DataFrame(freeday['wat_time'].groupby([freeday['phone_no']]).sum()) m1=m1.sort_values(['wat_time']) m1=m1.reset_index() m1['wat_time']=m1['wat_time']/3600 m2=pd.DataFrame(workday['wat_time'].groupby([workday['phone_no']]).sum()) m2=m1.sort_values(['wat_time']) m2=m1.reset_index() m2['wat_time']=m1['wat_time']/3600 w=sum(m2['wat_time'])/5 f=sum(m2['wat_time'])/2 plt.figure(figsize=(8,8)) plt.subplot(211) colors='lightgreen','lightcoral' plt.pie([w,f],labels=['工作日','周末'],colors=colors,shadow=True, autopct='%1.1f%%',pctdistance=1.23) plt.title('周末与工作日观看时长占比') plt.subplot(223) ax1=sns.barplot(x=m1.index,y=m1.iloc[:,1]) ax1.xaxis.set_major_locator(ticker.MultipleLocator(250)) ax1.xaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xlabel('观看用户(排序后)') plt.ylabel('观看时长(小时)') plt.title('周末用户观看总时长') plt.subplot(224) ax2=sns.barplot(x=m2.index,y=m2.iloc[:,1]) ax2.xaxis.set_major_locator(ticker.MultipleLocator(250)) ax2.xaxis.set_major_formatter(ticker.ScalarFormatter()) plt.xlabel('观看用户(排序后)') plt.ylabel('观看时长(小时)') plt.title('工作日用户观看总时长') plt.show()
时间: 2023-09-20 13:10:15 浏览: 118
indiefail:删除前在Indie.fail上显示的内容的副本
这是一段Python代码,主要是对一个数据集进行了分析和可视化。首先,根据数据集中的“星期”列将数据集分为工作日和周末两部分。然后,计算出每个用户在工作日和周末的观看时长,并将其存储在两个不同的数据框中。接下来,对这两个数据框进行排序和统计,并绘制了两个子图:一个是饼图,显示了工作日和周末观看时长的占比;另一个是条形图,显示了每个用户的观看时长。整个过程使用了Python的pandas、matplotlib和seaborn等库。
阅读全文