% 设定恒温箱温度范围 T_min = 20; % 最低温度 T_max = 40; % 最高温度 % 设定目标温度 T_set = 30; % 目标温度 % 设计PID控制器 Kp = 1.0; % 比例系数 Ki = 0.5; % 积分系数 Kd = 0.2; % 微分系数 pid_ctrl = pid(Kp, Ki, Kd); % 创建PID控制器对象 % 设置PID控制器参数 pid_ctrl.Ts = 0.1; % 采样时间 pid_ctrl.InputName = 'error'; % 输入信号名称 pid_ctrl.OutputName = 'u'; % 输出信号名称 pid_ctrl.InputUnit = '℃'; % 输入信号单位 pid_ctrl.OutputUnit = 'V'; % 输出信号单位 % 设计BP神经网络控制器 net = feedforwardnet([10 5]); % 创建一个2层的前馈神经网络 net = configure(net, rand(1,10), rand(1,1)); % 随机初始化网络参数 net.trainParam.showWindow = false; % 不显示训练窗口 % 设置BP神经网络控制器参数 net.inputs{1}.name = 'error'; % 输入信号名称 net.outputs{2}.name = 'u'; % 输出信号名称 net.inputs{1}.processFcns = {'mapminmax'}; % 输入信号归一化 net.outputs{2}.processFcns = {'mapminmax'}; % 输出信号归一化 % 生成随机温度信号作为输入信号 t = 0:0.1:100; input_signal = T_min + (T_max - T_min) * rand(size(t)); % 设定仿真时间步长 dt = 0.1; % 初始化温度和控制器输出变量 current_temperature = T_min; pid_output = 0; bp_output = 0; % 初始化温度变化图像 figure; % 初始化控制系统 T = T_rand(1); % 初始温度 error = T_set - T; % 初始误差 u_pid = 0; % 初始PID控制输出 u_nn = 0; % 初始BP神经网络控制输出 % 开始仿真循环 for i = 1:length(t)给这段代码中补充一个计算pid控制输出的代码,并给出补充后的代码

时间: 2023-08-05 08:10:44 浏览: 73
在仿真循环中添加以下代码来计算PID控制输出: error = T_set - current_temperature; % 计算误差值 pid_output = pid_ctrl(error); % 计算PID控制器输出值 u_pid = pid_output; % 赋值给PID控制输出变量 补充后的完整代码如下: % 设定恒温箱温度范围 T_min = 20; % 最低温度 T_max = 40; % 最高温度 % 设定目标温度 T_set = 30; % 目标温度 % 设计PID控制器 Kp = 1.0; % 比例系数 Ki = 0.5; % 积分系数 Kd = 0.2; % 微分系数 pid_ctrl = pid(Kp, Ki, Kd); % 创建PID控制器对象 % 设置PID控制器参数 pid_ctrl.Ts = 0.1; % 采样时间 pid_ctrl.InputName = 'error'; % 输入信号名称 pid_ctrl.OutputName = 'u'; % 输出信号名称 pid_ctrl.InputUnit = '℃'; % 输入信号单位 pid_ctrl.OutputUnit = 'V'; % 输出信号单位 % 设计BP神经网络控制器 net = feedforwardnet([10 5]); % 创建一个2层的前馈神经网络 net = configure(net, rand(1,10), rand(1,1)); % 随机初始化网络参数 net.trainParam.showWindow = false; % 不显示训练窗口 % 设置BP神经网络控制器参数 net.inputs{1}.name = 'error'; % 输入信号名称 net.outputs{2}.name = 'u'; % 输出信号名称 net.inputs{1}.processFcns = {'mapminmax'}; % 输入信号归一化 net.outputs{2}.processFcns = {'mapminmax'}; % 输出信号归一化 % 生成随机温度信号作为输入信号 t = 0:0.1:100; input_signal = T_min + (T_max - T_min) * rand(size(t)); % 设定仿真时间步长 dt = 0.1; % 初始化温度和控制器输出变量 current_temperature = T_min; pid_output = 0; bp_output = 0; % 初始化温度变化图像 figure; % 初始化控制系统 T = input_signal(1); % 初始温度 error = T_set - T; % 初始误差 u_pid = 0; % 初始PID控制输出 u_nn = 0; % 初始BP神经网络控制输出 % 开始仿真循环 for i = 1:length(t) % 计算PID控制输出 error = T_set - current_temperature; % 计算误差值 pid_output = pid_ctrl(error); % 计算PID控制器输出值 u_pid = pid_output; % 赋值给PID控制输出变量 % 计算BP神经网络控制输出 error = T_set - current_temperature; % 计算误差值 bp_input = mapminmax('apply', error, net.inputs{1}.processSettings); % 归一化输入信号 bp_output = net(bp_input); % 计算BP神经网络控制输出值 u_nn = mapminmax('reverse', bp_output, net.outputs{2}.processSettings); % 反归一化输出信号 % 计算下一个时刻的温度 current_temperature = current_temperature + (u_pid + u_nn) * dt; % 显示温度变化图像 plot(t(1:i), input_signal(1:i), 'b-', t(1:i), current_temperature * ones(1,i), 'r-'); xlabel('Time (s)'); ylabel('Temperature (℃)'); legend('Input Signal', 'Temperature'); drawnow; end

相关推荐

这段代码里有什么错误,帮我找出来并给出改正后的代码% 设定恒温箱温度范围 T_min = 18; T_max = 24; % 设定PID控制器参数 Kp = 1.2; Ki = 0.5; Kd = 0.1; % 设定BP神经网络控制器参数 hidden_layer_size = 10; max_epochs = 1000; learning_rate = 0.01; % 生成随机温度信号作为输入 t = 0:0.1:100; input_signal = T_min + (T_max - T_min) * rand(size(t)); % 初始化PID控制器 pid_controller = pid(Kp, Ki, Kd); % 初始化BP神经网络控制器 bp_controller = fitnet(hidden_layer_size); bp_controller.trainParam.epochs = max_epochs; bp_controller.trainParam.lr = learning_rate; % 设定仿真时间步长 dt = 0.1; % 初始化温度和控制器输出变量 current_temperature = T_min; pid_output = 0; bp_output = 0; % 开始仿真循环 for i = 1:length(t) % 计算PID控制器输出 pid_output = pid_controller(current_temperature, input_signal(i)); % 训练BP神经网络控制器 bp_controller = train(bp_controller, current_temperature, input_signal(i)); % 计算BP神经网络控制器输出 bp_output = bp_controller(current_temperature); % 计算当前温度 current_temperature = current_temperature + (pid_output + bp_output) * dt; % 保证温度在设定范围内 if current_temperature < T_min current_temperature = T_min; elseif current_temperature > T_max current_temperature = T_max; end % 输出当前时间、输入信号、PID输出、BP神经网络输出和当前温度 fprintf('Time: %f, Input: %f, PID Output: %f, BP Output: %f, Temperature: %f\n', t(i), input_signal(i), pid_output, bp_output, current_temperature); end

最新推荐

基于单片机的PID恒温箱控制

本设计的控制对象为一恒温箱,输入为加在电阻丝两断的电压,输出为恒温箱内的温度。控温范围为0~250℃,所采用的控制方案为数字PID控制。具有键盘输入设置温度给定值、手动/自动选择以及加热时间长短等功能,LCD液晶...

用单片机实现温度控制及显示

以单片机AT89C2051和数字温度传感器AD590为核心的电热恒温的设计方案,能实现精确控温,并能显示当前温度。其各项功能的实现由单片机控制系统来完成。其加热功率为0~50W,,电源为交流5V,调温范围+0℃~+100℃,...

基于S7-200及西门子人机界面触摸屏的温度控制设计

S7-200及西门子人机界面触摸屏的温度控制毕业设计 项目任务描述 : 在恒温箱内装有一个电加热元件和一致风扇,电加热元件和风扇的...现要控制恒温箱的温度恒定,且能在25-100摄氏度范围内可调 PLC 的I/O 口分配 PLC编程

计算机毕业设计-校园教务处管理系统.zip

计算机毕业设计中的校园教务处管理系统是一个旨在提高校园教务管理效率和质量的综合性信息平台。该系统采用SSM(Spring、SpringMVC、MyBatis)技术栈进行构建,利用Spring框架进行业务逻辑处理和依赖注入,通过SpringMVC实现模型-视图-控制器的设计模式,以及使用MyBatis作为ORM工具进行数据库持久化操作。系统功能涵盖了学生信息管理、课程安排、成绩录入与查询、教室资源分配、考试管理、教师工作量统计等关键模块,通过提供一个用户友好的界面和强大的后台管理功能,校园教务处管理系统不仅优化了教务工作流程,还提升了学生和教师的互动体验,是计算机专业学生展示其系统分析、设计和开发能力的理想项目。

一些关于创新创意类的电赛竞赛文档.zip

一些关于创新创意类的电赛竞赛文档

stc12c5a60s2 例程

stc12c5a60s2 单片机的所有功能的实例,包括SPI、AD、串口、UCOS-II操作系统的应用。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限

![【迁移学习在车牌识别中的应用优势与局限】: 讨论迁移学习在车牌识别中的应用优势和局限](https://img-blog.csdnimg.cn/direct/916e743fde554bcaaaf13800d2f0ac25.png) # 1. 介绍迁移学习在车牌识别中的背景 在当今人工智能技术迅速发展的时代,迁移学习作为一种强大的技术手段,在车牌识别领域展现出了巨大的潜力和优势。通过迁移学习,我们能够将在一个领域中学习到的知识和模型迁移到另一个相关领域,从而减少对大量标注数据的需求,提高模型训练效率,加快模型收敛速度。这种方法不仅能够增强模型的泛化能力,提升识别的准确率,还能有效应对数据

margin-top: 50%;

margin-top: 50%; 是一种CSS样式代码,用于设置元素的上边距(即与上方元素或父级元素之间的距离)为其父元素高度的50%。 这意味着元素的上边距将等于其父元素高度的50%。例如,如果父元素的高度为100px,则该元素的上边距将为50px。 请注意,这个值只在父元素具有明确的高度(非auto)时才有效。如果父元素的高度是auto,则无法确定元素的上边距。 希望这个解释对你有帮助!如果你还有其他问题,请随时提问。

Android通过全局变量传递数据

在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和访问 除非是Web服务器停止 Android中的全局对象非常类似于Java Web中的Application域 除非是Android应用程序清除内存 否则全局对象将一直可以访问 1 定义一个类继承Application public class MyApp extends Application 2 在AndroidMainfest xml中加入全局变量 android:name &quot; MyApp&quot; 3 在传数据类中获取全局变量Application对象并设置数据 myApp MyApp getApplication ; myApp setName &quot;jack&quot; ; 修改之后的名称 4 在收数据类中接收Application对象 myApp MyApp getApplication ;">在Activity之间数据传递中还有一种比较实用的方式 就是全局对象 实用J2EE的读者来说都知道Java Web的四个作用域 这四个作用域从小到大分别是Page Request Session和Application 其中Application域在应用程序的任何地方都可以使用和 [更多]