select quarter(d.订购日期) as 季度,sum (dm.单价*dm.数量*(case when dm.折扣 = 0 then 1 else (1-dm.折扣) end))as 销售额 from 订单 d join 订单明细 dm on dm.订单ID = d.订单ID group by order by 季度 错在那里

时间: 2023-12-31 09:03:52 浏览: 72
QDZ

Quartus-13.0.0.156_Device,包含cyclonev-13.0.0.156

star5星 · 资源好评率100%
应该将 `group by` 放到 `select` 语句的后面,而非 `order by` 的前面。正确的 SQL 语句应该是: ``` select quarter(d.订购日期) as 季度, sum(dm.单价 * dm.数量 * (case when dm.折扣 = 0 then 1 else (1 - dm.折扣) end)) as 销售额 from 订单 d join 订单明细 dm on dm.订单ID = d.订单ID group by quarter(d.订购日期) order by 季度 ``` 这样才能按照季度来进行分组,并且按照季度的顺序进行排序。
阅读全文

相关推荐

result = result.map(obj => { return { reportType: selected, ...obj }; // 这里的0可以替换为实际的年龄值 }); for (let i in result){ //result[i].reportType=selected if(selected==='0'){ selectDate = document.getElementById("monthDate").value ? document.getElementById("monthDate").value:null; if(selectDate===null){ alert('请选择日期!') }else{ result = result.map(obj => { return { informMonth: selectDate, ...obj }; // 这里的0可以替换为实际的年龄值 }); //result[i].informMonth=selectDate } }else if(selected==='1'){ selectDate = document.getElementById("qt_1").value ? document.getElementById("qt_1").value:null; if(selectDate===null){ alert('请选择日期!') }else{ var quarter=selectDate.slice(-1); var year = selectDate.substring(0, 4); let startMonth = (quarter - 1) * 3 + 1; let endMonth = startMonth + 2; let startDate = new Date(year, startMonth - 1, 1); let endDate = new Date(year, endMonth - 1, 1); endDate.setMonth(endDate.getMonth() + 1); endDate.setDate(endDate.getDate() - 1); startMonth=(startDate.getMonth()+1).toString().padStart(2,'0'); endMonth=(endDate.getMonth()+1).toString().padStart(2,'0'); date=startDate.getFullYear() + "-" + startMonth + "/" + year + "-" + endMonth ; result = result.map(obj => { return { informMonth: date, ...obj }; }); //result[i].informMonth=date } }else if(selected==='2'){ selectDate = document.getElementById("yearDate").value ? document.getElementById("yearDate").value:null; if(selectDate===null){ alert('请选择日期!') }else{ result = result.map(obj => { return { informMonth: selectDate, ...obj }; }); //result[i].informMonth=selectDate } } }哪里有问题

select * from (select city_name 城市名称 , county_name 城区名称 , street_name 街道名称 , living_quarter_name 小区名称 , pump_house_name 泵房名称 , case when pump_house_name='中骏西湖一号' and water_pressure_area is not null then concat('中骏西湖一号',water_pressure_area) else water_pressure_area end 水压分区 , concat(ifnull(living_quarter_name,''),ifnull(pump_house_name,''),ifnull(water_pressure_area,'整体')) 泵站 , idx_cal_time 时间 , case when idx_cal_period ='d' then DATE_FORMAT(idx_cal_time,'%Y-%m-%d') when idx_cal_period ='m' then DATE_FORMAT(idx_cal_time,'%Y-%m') when idx_cal_period ='y' then DATE_FORMAT(idx_cal_time,'%Y') else idx_cal_time end 采集时间 , stat_type_nm 指标名称 , case when stat_type_nm like '%压力%' then '出水压力' when stat_type_nm like '%供水%' then '供水量' when stat_type_nm like '%电耗%' then '电耗量' when stat_type_nm like '%电压%' then '电压' when stat_type_nm like '%电流%' then '电流' when stat_type_nm like '%频率%' then '频率' when stat_type_nm like '%功率%' then '功率' else '' end '指标类型' , case when stat_type_nm like '%压力%' then 'MPa' when stat_type_nm like '%供水%' then 'm³' when stat_type_nm like '%电耗%' then 'kW·h' when stat_type_nm like '%电压%' then 'V' when stat_type_nm like '%电流%' then 'A' when stat_type_nm like '%频率%' then 'Hz' when stat_type_nm like '%功率%' then 'kW' else '' end '单位' , round(idx_val,2) 指标值 , case idx_cal_period when 'h' then '每小时' when 'd' then '每天' when 'm' then '每月' else '每年' end 统计周期 from dm_ws_iot_opc_point_idx_stat )a这个sql语句能优化查询速度吗

代码优化: quarter_dict = { '1': [date(year=timing.year, month=1, day=1), date(year=timing.year, month=3, day=calendar.monthrange(timing.year, 3)[-1])], '2': [date(year=timing.year, month=1, day=1), date(year=timing.year, month=3, day=calendar.monthrange(timing.year, 3)[-1])], '3': [date(year=timing.year, month=1, day=1), date(year=timing.year, month=3, day=calendar.monthrange(timing.year, 3)[-1])], '4': [date(year=timing.year, month=4, day=1), date(year=timing.year, month=6, day=calendar.monthrange(timing.year, 6)[-1])], '5': [date(year=timing.year, month=4, day=1), date(year=timing.year, month=6, day=calendar.monthrange(timing.year, 6)[-1])], '6': [date(year=timing.year, month=4, day=1), date(year=timing.year, month=6, day=calendar.monthrange(timing.year, 6)[-1])], '7': [date(year=timing.year, month=7, day=1), date(year=timing.year, month=9, day=calendar.monthrange(timing.year, 9)[-1])], '8': [date(year=timing.year, month=7, day=1), date(year=timing.year, month=9, day=calendar.monthrange(timing.year, 9)[-1])], '9': [date(year=timing.year, month=7, day=1), date(year=timing.year, month=9, day=calendar.monthrange(timing.year, 9)[-1])], '10': [date(year=timing.year, month=10, day=1), date(year=timing.year, month=12, day=calendar.monthrange(timing.year, 12)[-1])], '11': [date(year=timing.year, month=10, day=1), date(year=timing.year, month=12, day=calendar.monthrange(timing.year, 12)[-1])], '12': [date(year=timing.year, month=10, day=1), date(year=timing.year, month=12, day=calendar.monthrange(timing.year, 12)[-1])] }

import pandas as pd import numpy as np import matplotlib.pyplot as plt import jieba import requests import re from io import BytesIO import imageio # 设置城市和时间 city = '上海' year = 2021 quarter = 2 # 爬取数据 url = f'http://tianqi.2345.com/t/wea_history/js/{city}/{year}/{quarter}.js' response = requests.get(url) text = response.content.decode('gbk') # 正则表达式匹配 pattern = re.compile(r'(\d{4}-\d{2}-\d{2})\|(\d{1,2})\|(\d{1,2})\|(\d{1,3})\|(\d{1,3})\|(\D+)\n') result = pattern.findall(text) # 数据整理 data = pd.DataFrame(result, columns=['日期', '最高温度', '最低温度', '空气质量指数', '风力等级', '天气']) data[['最高温度', '最低温度', '空气质量指数', '风力等级']] = data[['最高温度', '最低温度', '空气质量指数', '风力等级']].astype(int) data['日期'] = pd.to_datetime(data['日期']) # 可视化分析 # 统计天气情况 weather_count = data['天气'].value_counts() weather_count = weather_count[:10] # 分词统计 seg_list = jieba.cut(' '.join(data['天气'].tolist())) words = {} for word in seg_list: if len(word) < 2: continue if word in words: words[word] += 1 else: words[word] = 1 # 绘制柱状图和词云图 plt.figure(figsize=(10, 5)) plt.bar(weather_count.index, weather_count.values) plt.title(f'{city}{year}年第{quarter}季度天气情况') plt.xlabel('天气') plt.ylabel('次数') plt.savefig('weather_bar.png') wordcloud = pd.DataFrame(list(words.items()), columns=['word', 'count']) mask_image = imageio.imread('cloud_mask.png') wordcloud.plot(kind='scatter', x='count', y='count', alpha=0.5, s=300, cmap='Reds', figsize=(10, 5)) for i in range(len(wordcloud)): plt.text(wordcloud.iloc[i]['count'], wordcloud.iloc[i]['count'], wordcloud.iloc[i]['word'], ha='center', va='center', fontproperties='SimHei') plt.axis('off') plt.imshow(mask_image, cmap=plt.cm.gray, interpolation='bilinear') plt.savefig('weather_wordcloud.png')这个python代码有错误,请改正以使该代码运行成功

最新推荐

recommend-type

mysql中常用日期比较与计算函数

这些函数分别返回日期的月份中的日期、一年中的天数、月份编号、月份名称和季度编号,用于获取日期的详细信息: ```sql SELECT DAYOFMONTH('1998-02-03'), DAYOFYEAR('1998-02-03'), MONTH('1998-02-03'), MONTH...
recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001