稀疏贝叶斯学习的高效DOA估计代码怎么写
时间: 2023-11-27 22:52:37 浏览: 80
利用稀疏贝叶斯学习的稀疏恢复辅助Doa估计
稀疏贝叶斯学习可以用于DOA估计问题,以下是一个简单的代码实现:
```
import numpy as np
from scipy.linalg import svd
from scipy.sparse.linalg import svds
from sklearn.cluster import KMeans
def sparse_bayesian_learning_DOA(data, n_sources, n_iter=50):
n_samples, n_antennas = data.shape
# 初始化稀疏系数和噪声方差
alpha = np.ones((n_samples, n_sources))
noise_var = np.var(data) / 100
for i in range(n_iter):
# 更新稀疏系数
beta = 1.0 / noise_var
gamma = alpha * beta
W = np.diag(gamma.flatten())
A = np.dot(W, data)
U, S, V = svd(A, full_matrices=False)
S = np.maximum(S - beta, 0)
D = np.dot(U, np.dot(np.diag(S), V))
for j in range(n_sources):
# 通过KMeans聚类获得位置
kmeans = KMeans(n_clusters=1, random_state=0).fit(D[:, j].reshape(-1, 1))
alpha[:, j] = np.exp(-np.square(D[:, j] - kmeans.cluster_centers_[:, 0]) / (2 * noise_var))
# 更新噪声方差
noise_var = np.sum(np.square(data - D)) / (n_samples * n_antennas)
# 获得DOA估计结果
doa = []
for j in range(n_sources):
kmeans = KMeans(n_clusters=1, random_state=0).fit(D[:, j].reshape(-1, 1))
doa.append(kmeans.cluster_centers_[0])
return doa
```
其中,`data`是接收到的数据矩阵,`n_sources`是源数量,`n_iter`是迭代次数。在代码中,首先初始化稀疏系数和噪声方差,然后进行迭代更新,直到噪声方差收敛。在每次迭代中,先更新稀疏系数,然后通过KMeans聚类获得DOA估计结果。最后返回DOA估计结果。
阅读全文