帮我生成一段用pycharm运行的用InceptionV3搭建的简单代码,不需要自己操作,不用keras,且库比较少。可以得到训练集和验证集的准确率曲线、损失函数曲线以及交叉熵函数曲线

时间: 2023-12-10 11:37:45 浏览: 82
好的,以下是使用PyTorch实现InceptionV3模型的简单代码,可以得到训练集和验证集的准确率曲线、损失函数曲线以及交叉熵函数曲线,同时没有使用Keras,库比较少: ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pyplot as plt # 定义数据预处理方式 train_transform = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) # 加载数据集 train_data = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform) test_data = datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform) # 定义超参数 batch_size = 128 learning_rate = 0.1 num_epochs = 100 # 定义数据加载器 train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_data, batch_size=batch_size, shuffle=False) # 定义InceptionV3模型 class InceptionV3(nn.Module): def __init__(self): super(InceptionV3, self).__init__() self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.conv3 = nn.Conv2d(64, 80, kernel_size=1, stride=1) self.conv4 = nn.Conv2d(80, 192, kernel_size=3, stride=1, padding=1) self.inception1 = Inception(192, 64, 96, 128, 16, 32, 32) self.inception2 = Inception(256, 128, 128, 192, 32, 96, 64) self.inception3 = Inception(480, 192, 96, 208, 16, 48, 64) self.inception4 = Inception(512, 160, 112, 224, 24, 64, 64) self.inception5 = Inception(512, 128, 128, 256, 24, 64, 64) self.inception6 = Inception(512, 112, 144, 288, 32, 64, 64) self.inception7 = Inception(528, 256, 160, 320, 32, 128, 128) self.inception8 = Inception(832, 256, 160, 320, 32, 128, 128) self.inception9 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(kernel_size=8, stride=1) self.linear = nn.Linear(1024, 10) def forward(self, x): x = nn.functional.relu(self.conv1(x)) x = nn.functional.max_pool2d(nn.functional.relu(self.conv2(x)), kernel_size=2, stride=2) x = nn.functional.relu(self.conv3(x)) x = nn.functional.max_pool2d(nn.functional.relu(self.conv4(x)), kernel_size=2, stride=2) x = self.inception1(x) x = self.inception2(x) x = nn.functional.max_pool2d(self.inception3(x), kernel_size=2, stride=2) x = self.inception4(x) x = self.inception5(x) x = self.inception6(x) x = nn.functional.max_pool2d(self.inception7(x), kernel_size=2, stride=2) x = self.inception8(x) x = nn.functional.avg_pool2d(self.inception9(x), kernel_size=8, stride=1) x = x.view(x.size(0), -1) x = self.linear(x) return x # 定义Inception模块 class Inception(nn.Module): def __init__(self, in_channels, out1x1, reduce3x3_1, reduce3x3_2, reduce5x5_1, reduce5x5_2, out5x5): super(Inception, self).__init__() self.conv1 = nn.Conv2d(in_channels, out1x1, kernel_size=1, stride=1) self.conv2_1 = nn.Conv2d(in_channels, reduce3x3_1, kernel_size=1, stride=1) self.conv2_2 = nn.Conv2d(reduce3x3_1, reduce3x3_2, kernel_size=3, stride=1, padding=1) self.conv3_1 = nn.Conv2d(in_channels, reduce5x5_1, kernel_size=1, stride=1) self.conv3_2 = nn.Conv2d(reduce5x5_1, reduce5x5_2, kernel_size=5, stride=1, padding=2) self.conv4_1 = nn.Conv2d(in_channels, out5x5, kernel_size=1, stride=1) self.conv4_2 = nn.Conv2d(out5x5, out5x5, kernel_size=3, stride=1, padding=1) def forward(self, x): out1 = nn.functional.relu(self.conv1(x)) out2 = nn.functional.relu(self.conv2_2(nn.functional.relu(self.conv2_1(x)))) out3 = nn.functional.relu(self.conv3_2(nn.functional.relu(self.conv3_1(x)))) out4 = nn.functional.relu(self.conv4_2(nn.functional.relu(self.conv4_1(x)))) out = torch.cat([out1, out2, out3, out4], dim=1) return out # 初始化模型和优化器 model = InceptionV3() optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9) criterion = nn.CrossEntropyLoss() # 训练模型 train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] for epoch in range(num_epochs): train_loss = 0.0 train_correct = 0 model.train() for images, labels in train_loader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) train_correct += (preds == labels).sum().item() train_loss /= len(train_loader.dataset) train_acc = train_correct / len(train_loader.dataset) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss = 0.0 test_correct = 0 model.eval() with torch.no_grad(): for images, labels in test_loader: outputs = model(images) loss = criterion(outputs, labels) test_loss += loss.item() * images.size(0) _, preds = torch.max(outputs, 1) test_correct += (preds == labels).sum().item() test_loss /= len(test_loader.dataset) test_acc = test_correct / len(test_loader.dataset) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}' .format(epoch+1, num_epochs, train_loss, train_acc, test_loss, test_acc)) # 绘制准确率曲线 plt.plot(train_acc_list, label='Train Acc') plt.plot(test_acc_list, label='Test Acc') plt.legend() plt.show() # 绘制损失函数曲线 plt.plot(train_loss_list, label='Train Loss') plt.plot(test_loss_list, label='Test Loss') plt.legend() plt.show() # 绘制交叉熵函数曲线 plt.plot(train_loss_list, label='Train Cross Entropy') plt.plot(test_loss_list, label='Test Cross Entropy') plt.legend() plt.show() ``` 注意:在运行代码之前,需要先安装PyTorch库。
阅读全文

相关推荐

大家在看

recommend-type

10-银河麒麟高级服务器操作系统SPx升级到SP3版本操作指南

银河麒麟高级服务器操作系统 SPx升级到 SP3 版本操作指南-X86、ARM
recommend-type

Solidworks PDM Add-in Demo

官方范例入门Demo,调试成功
recommend-type

ArcGIS API for JavaScript 开发教程

非常完整的ArcGIS API for JavaScript开发教程,相信会对你的开发有帮助。
recommend-type

任务执行器-用于ad9834波形发生器(dds)的幅度控制电路

7.2 任务执行器 堆垛机 概述 堆垛机是一种特殊类型的运输机,专门设计用来与货架一起工作。堆垛机在两排货架间的巷 道中往复滑行,提取和存入临时实体。堆垛机可以充分展示伸叉、提升和行进动作。提升和 行进运动是同时进行的,但堆垛机完全停车后才会进行伸叉。 详细说明 堆垛机是任务执行器的一个子类。它通过沿着自身x轴方向行进的方式来实现偏移行进。它 一直行进直到与目的地位置正交,并抬升其载货平台。如果偏移行进是要执行装载或卸载任 务,那么一完成偏移,它就会执行用户定义的装载/卸载时间,将临时实体搬运到其载货平 台,或者从其载货平台搬运到目的位置。 默认情况下,堆垛机不与导航器相连。这意味着不执行行进任务。取尔代之,所有行进都采 用偏移行进的方式完成。 关于将临时实体搬运到堆垛机上的注释:对于一个装载任务,如果临时实体处于一个不断刷 新临时实体位置的实体中,如传送带时,堆垛机就不能将临时实体搬运到载货平台上。这种 情况下,如果想要显示将临时实体搬运到载货平台的过程,则需确保在模型树中,堆垛机排 在它要提取临时实体的那个实体的后面(在模型树中,堆垛机必须排在此实体下面)。 除了任务执行器所具有的标准属性外,堆垛机具有建模人员定义的载货平台提升速度和初始 提升位置。当堆垛机空闲或者没有执行偏移行进任务时,载货平台将回到此初始位置的高度。 332 美国Flexsim公司&北京创时能科技发展有限公司版权所有【010-82780244】
recommend-type

线切割报价软件,CAD线切割插件,飞狼线切割工具箱

飞狼线切割工具箱功能多多,是编程与报价人员必不可少的工具,下面列出一部分: 1.报价功能 2.生成边框 3.求外轮廓线 4.动态调整线型比例 5.批量倒圆角 6.点选串成多段线 7.断点连接 8.框选串成多段线 9.画齿轮 10.画链轮 11.生成3B程序 12.生成4B程序 13.生成G代码

最新推荐

recommend-type

pycharm+django创建一个搜索网页实例代码

在本教程中,我们将探讨如何使用PyCharm和Django框架创建一个简单的搜索网页实例。首先,我们需要了解PyCharm和Django的基础知识。 PyCharm是一款强大的Python集成开发环境,它提供了丰富的功能,如代码高亮、自动...
recommend-type

解决在pycharm运行代码,调用CMD窗口的命令运行显示乱码问题

然而,有时在使用 PyCharm 运行代码时,尤其是当代码涉及到通过 `os.system()` 或其他方式调用CMD(命令提示符)窗口执行系统命令时,可能会遇到显示乱码的问题。这个问题主要出现在CMD窗口中显示的非ASCII字符,如...
recommend-type

基于jupyter代码无法在pycharm中运行的解决方法

**基于Jupyter代码无法在PyCharm中运行的解决方法** 在进行数据分析或者机器学习项目时,开发环境的选择至关重要。有些开发者可能习惯于使用Jupyter Notebook的交互式环境,而另一些则偏好集成开发环境(IDE)如...
recommend-type

PyCharm中如何直接使用Anaconda已安装的库

在Python开发环境中,PyCharm 和 Anaconda 都是非常受...如果你已经习惯了 PyCharm 的操作,那么在 PyCharm 中直接使用 Anaconda 的库将是一个理想的选择,既保留了 PyCharm 的便利性,又充分利用了 Anaconda 的生态。
recommend-type

Python-Pycharm实现的猴子摘桃小游戏(源代码)

在本篇【Python-Pycharm实现的猴子摘桃小游戏(源代码)】中,我们讨论了一个使用Python编程语言和PyCharm集成开发环境(IDE)创建的趣味游戏。游戏是基于pygame库构建的,该库提供了图形用户界面和多媒体功能,非常适合...
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。