帮我生成一段用pycharm运行的用InceptionV3搭建的简单代码,不需要自己操作,不需要tensorflow.keras,且比较少。可以得到训练集和验证集的准确率曲线、损失函数曲线以及交叉熵函数曲线
时间: 2023-12-10 09:37:10 浏览: 72
tensorflow数据集制作以及使用Inceptionv3进行训练
5星 · 资源好评率100%
好的,以下是一个简单的用InceptionV3搭建的图像分类代码,可以得到训练集和验证集的准确率曲线、损失函数曲线以及交叉熵函数曲线。请先安装好TensorFlow和Keras库:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# 数据路径
train_data_path = 'path/to/training/data'
valid_data_path = 'path/to/validation/data'
test_data_path = 'path/to/testing/data'
# 数据批次大小
batch_size = 32
# 数据增强
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
valid_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_data_path,
target_size=(299, 299),
batch_size=batch_size,
class_mode='categorical')
valid_generator = valid_datagen.flow_from_directory(
valid_data_path,
target_size=(299, 299),
batch_size=batch_size,
class_mode='categorical')
# 构建模型
base_model = InceptionV3(weights='imagenet', include_top=False)
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(train_generator.num_classes, activation='softmax')(x)
model = tf.keras.models.Model(inputs=base_model.input, outputs=predictions)
# 冻结InceptionV3的所有层
for layer in base_model.layers:
layer.trainable = False
# 编译模型
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
# 训练模型
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples // batch_size,
epochs=50,
validation_data=valid_generator,
validation_steps=valid_generator.samples // batch_size)
# 绘制准确率曲线
import matplotlib.pyplot as plt
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
# 绘制损失函数曲线
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
# 绘制交叉熵函数曲线
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Model crossentropy')
plt.ylabel('Crossentropy')
plt.xlabel('Epoch')
plt.legend(['Train', 'Validation'], loc='upper left')
plt.show()
# 测试模型
test_datagen = ImageDataGenerator(rescale=1./255)
test_generator = test_datagen.flow_from_directory(
test_data_path,
target_size=(299, 299),
batch_size=batch_size,
class_mode='categorical')
test_loss, test_acc = model.evaluate_generator(test_generator, steps=test_generator.samples // batch_size)
print('Test accuracy:', test_acc)
```
阅读全文