逐句解释代码:always @(posedge clkr) begin current=next; case(current) set0: begin rs<=0; dat<=8'h30; next<=set1; end set1: begin rs<=0; dat<=8'h0c; next<=set2; end set2: begin rs<=0; dat<=8'h6; next<=set3; end set3: begin rs<=0; dat<=8'h1; next<=dat0; end dat0: begin rs<=1; dat<="H"; next<=dat1; end dat1: begin rs<=1; dat<="E"; next<=dat2; end dat2: begin rs<=1; dat<="L"; next<=dat3; end dat3: begin rs<=1; dat<="L"; next<=dat4; end dat4: begin rs<=1; dat<="O"; next<=dat5; end dat5: begin rs<=1; dat<=" "; next<=dat6; end dat6: begin rs<=1; dat<="W"; next<=dat7; end dat7: begin rs<=1; dat<="O"; next<=dat8; end dat8: begin rs<=1; dat<="R"; next<=dat9; end dat9: begin rs<=1; dat<="L"; next<=dat10; end dat10: begin rs<=1; dat<="D"; next<=dat11; end dat11: begin rs<=1; dat<="!"; next<=nul; end nul: begin rs<=0; dat<=8'h00; if(cnt!=2'h2) begin e<=0;next<=set0;cnt<=cnt+1; end else begin next<=nul; e<=1; end end default: next=set0; endcase end assign en=clkr|e; assign rw=0;

时间: 2024-04-03 08:31:24 浏览: 10
这是一个 Verilog HDL 代码段,描述了一个状态机的行为,其中: - `always @(posedge clkr)` 表示一个时钟触发的敏感列表,即只有时钟上升沿到来时才会执行其中的代码。 - `begin` 和 `end` 之间的代码块是状态机的主体。 - `current=next;` 表示将当前状态 `current` 更新为下一状态 `next`。 - `case(current)` 表示开始一个 `case` 语句块,根据当前状态进行不同的操作。 - `set0` 到 `dat11` 是状态机的一些状态,表示发送数据到某些设备。 - `nul` 表示数据发送完毕后的状态。 - 在每个状态中,`rs` 和 `dat` 分别表示数据线路上的寄存器选择信号和数据,`next` 表示下一个状态。 - `default` 表示默认操作,即如果当前状态不是上述状态之一,那么默认将下一个状态设为 `set0`。 - `assign` 语句用来给一个信号赋值,`en` 表示使能信号,`rw` 表示读写控制信号。 - `clkr` 表示时钟信号,`e` 表示状态机是否已经完成发送数据,`cnt` 表示计数器,`|` 表示逻辑或运算符,`+` 表示加法运算符。
相关问题

module state_6_8(x,z,clk,rst,state); input x,clk,rst; output z; output[2:0] state; reg z; reg [2:0] current_state,next_state; parameter s0=3'd0, s1=3'd1, s2=3'd2, s3=3'd3, s4=3'd4;//标识符 assign state=current_state; always@(posedge clk or posedge rst) begin if(rst) begin current_state<=s0; end else current_state<=next_state; end //主控时序逻辑描述 always@(current_state or x) begin casex(current_state) s0:if(x==1'b1) begin next_state<=s1; //次态逻辑和输出 z<=0; end else begin next_state<=s0; //次态逻辑和输出 z<=0; end s1:if(x==1'b0) begin next_state<=s2; //次态逻辑和输出 z<=0; end else begin next_state<=s1; z<=0; end s2:if(x==1'b0) begin next_state<=s3; z<=0; end else begin next_state<=s1; z<=0; end s3:if(x==1'b1) begin next_state<=s4; z<=1; end else begin next_state<=s0; z<=0; end /*s4:if(x==1'b1) begin next_state<=s1; z<=0; end else begin next_state<=s0; z<=0; end*/ s4:if(x==1'b1) begin next_state<=s1; z<=0; end else begin next_state<=s2; z<=0; end default next_state<=s0; endcase end endmodule 修改为11011序列检测电路代码

module state_11011(x, z, clk, rst, state); input x, clk, rst; output z; output [2:0] state; reg z; reg [2:0] current_state, next_state; parameter s0 = 3'd0, s1 = 3'd1, s2 = 3'd2, s3 = 3'd3, s4 = 3'd4; assign state = current_state; always @(posedge clk or posedge rst) begin if (rst) begin current_state <= s0; end else begin current_state <= next_state; end end always @(current_state or x) begin case (current_state) s0: if (x == 1'b1) begin next_state <= s1; z <= 0; end else begin next_state <= s0; z <= 0; end s1: if (x == 1'b1) begin next_state <= s2; z <= 0; end else if (x == 1'b0) begin next_state <= s1; z <= 0; end s2: if (x == 1'b0) begin next_state <= s3; z <= 0; end else if (x == 1'b1) begin next_state <= s1; z <= 0; end s3: if (x == 1'b1) begin next_state <= s4; z <= 0; end else if (x == 1'b0) begin next_state <= s3; z <= 0; end s4: if (x == 1'b1) begin next_state <= s1; z <= 1; end else if (x == 1'b0) begin next_state <= s2; z <= 0; end default: next_state <= s0; endcase end endmodule

请帮我纠正以下代码的错误:module pmod_oled_spi( input wire clk, input wire rst, input wire cs, input wire mosi, input wire sclk ); reg [7:0] data_out; reg [7:0] cnt; reg [1:0] state; parameter IDLE = 2'b00; parameter START = 2'b01; parameter WRITE = 2'b10; always @(posedge clk) begin if (rst) begin state <= IDLE; cnt <= 0; data_out <= 0; end else case (state) IDLE: begin if (cnt == 0) begin state <= START; cnt <= 1; end else cnt <= cnt; end START: begin if (cs == 1'b0) begin state <= WRITE; cnt <= 1; end else cnt <= cnt; end WRITE: begin if (cnt < 9) begin mosi <= data_out[7-cnt]; sclk <= 1'b0; cnt <= cnt + 1; end else begin mosi <= 1'b0; sclk <= 1'b1; state <= IDLE; cnt <= 0; end end default: cnt <= 0; endcase end always @(posedge clk) begin if (rst) begin data_out <= 0; end else if (state == WRITE) begin data_out <= data_out << 1 | 1'b0; // TODO: 根据OLED通信协议修改 end end endmodule

在这个代码中,有一个错误是在 always @(posedge clk) 的过程块中同时对 data_out 进行了赋值,这个赋值语句是冲突的。因为过程块中的语句是并行执行的,如果同时对 data_out 进行赋值,那么它的值会变得不可预测。下面是纠正后的代码: ```verilog module pmod_oled_spi( input wire clk, input wire rst, input wire cs, input wire mosi, input wire sclk ); reg [7:0] data_out; reg [7:0] cnt; reg [1:0] state; parameter IDLE = 2'b00; parameter START = 2'b01; parameter WRITE = 2'b10; always @(posedge clk) begin if (rst) begin state <= IDLE; cnt <= 0; data_out <= 0; end else case (state) IDLE: begin if (cnt == 0) begin state <= START; cnt <= 1; end else cnt <= cnt; end START: begin if (cs == 1'b0) begin state <= WRITE; cnt <= 1; end else cnt <= cnt; end WRITE: begin if (cnt < 9) begin mosi <= data_out[7-cnt]; sclk <= 1'b0; cnt <= cnt + 1; end else begin mosi <= 1'b0; sclk <= 1'b1; state <= IDLE; cnt <= 0; end end default: cnt <= 0; endcase end always @(posedge clk) begin if (rst) begin data_out <= 0; end else if (state == WRITE && cnt == 0) begin data_out <= data_out << 1 | 1'b0; // TODO: 根据OLED通信协议修改 end else begin data_out <= data_out; end end endmodule ``` 在修改后的代码中,我们将对 data_out 的赋值从第一个过程块中移除,并将它放在第二个过程块中,这样就不会出现并行赋值的问题了。

相关推荐

问题在哪?always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin bps_start_r <= 1'bz;//波特率时钟启动信号 tx_en <= 1'b0; tx_data <= 1'b0; count <= 1'b0; end else if(start) begin //接收数据完毕,准备把接收到的数据发回去 bps_start_r <= 1'b1;//波特率时钟状态为1 case(count) 1'b00:begin tx_data <= data[2'd0]; count <= 1'b01; end 1'b01:begin tx_data <= data[2'd1]; count <= 1'b10; end 1'b10:begin//不做这个? tx_data <= data[2'd2]; count <= 1'b00; end default:count <= 1'b00; endcase tx_en <= 1'b1; //进入发送数据状态中 end else if(num==8'd11) begin //数据发送完成,复位 bps_start_r <= 1'b0; tx_en <= 1'b0; end end assign bps_start = bps_start_r; //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 8'd0; rs232_tx_r <= 1'b1; end else if(tx_en)//发送数据使能信号 begin if(clk_bps) begin num <= num+1'b1; case (num) 8'd0: rs232_tx_r <= 1'b0; //发送起始位 8'd1: rs232_tx_r <= tx_data[0] ; //发送第0bit 8'd2: rs232_tx_r <= tx_data[1] ; //发送第1bit 8'd3: rs232_tx_r <= tx_data[2] ; //发送第2bit 8'd4: rs232_tx_r <= tx_data[3] ; //发送第3bit 8'd5: rs232_tx_r <= tx_data[4] ; //发送第4bit 8'd6: rs232_tx_r <= tx_data[5] ; //发送第5bit 8'd7: rs232_tx_r <= tx_data[6] ; //发送第6bit 8'd8: rs232_tx_r <= tx_data[7] ; //发送第7bit 8'd9: rs232_tx_r <= 1'b1; //发送结束位 default: rs232_tx_r <= 1'b1; endcase end else if(num==8'd11) num <= 8'd0; //复位 end end assign rs232_tx = rs232_tx_r;

module test_top( output reg pin98_te3, //codein output reg pin99_te4, //cmi_ceded output reg pin100_te5, //cmi_decoded input wire pin103_te6, //system clk 7.68Mhz input wire rst //reset ); reg [3:0] counter; reg clk1; reg clk2; always@(posedge pin103_te6 or negedge rst) begin if(!rst) counter <= 4'b0; else if(counter == 4'b1111) begin counter <= 4'b0; end else if(pin103_te6) begin counter <= counter+1; end end always@(posedge pin103_te6 or negedge rst) begin if(!rst) clk1 <= 0; else if(counter[3] == 0) clk1 <= 1'b0; else if(counter[3] == 1) clk1 <= 1'b1; end always@(posedge pin103_te6 or negedge rst) begin if(!rst) clk2 <= 0; else if(counter[2] == 0) clk2 <= 1'b1; else if(counter[2] == 1) clk2 <= 1'b0; end reg [3:0] num; always@(posedge clk1 or negedge rst) begin if(!rst) begin num <= 4'b0; end else if(num == 4'b1111) begin num <= 4'b0; end else num <= num+1; case(num) 4'b0110:pin98_te3 <=1; 4'b0111:pin98_te3 <=1; 4'b1000:pin98_te3 <=1; 4'b1001:pin98_te3 <=1; 4'b1010:pin98_te3 <=0; 4'b1011:pin98_te3 <=1; 4'b1100:pin98_te3 <=0; 4'b1101:pin98_te3 <=0; 4'b1110:pin98_te3 <=0; 4'b1111:pin98_te3 <=1; default:pin98_te3 <=0; endcase end reg [1:0] cmi_reg; reg flag =0; always@(posedge clk1) begin if(pin98_te3 == 0) cmi_reg <= 2'b01; else if(pin98_te3 == 1) begin if(flag == 0) begin cmi_reg <= 2'b00; flag <=~flag; end else if(flag == 1) begin cmi_reg <= 2'b11; flag <=~flag; end end end reg flag0 = 1'b0; always@(posedge clk2) begin flag0 <= flag0 + 1; if(flag0 == 1) pin99_te4 <= cmi_reg[0]; else if(flag0 == 0) pin99_te4<=cmi_reg[1]; end always@(posedge clk2) begin if(cmi_reg == 2'b01) pin100_te5<=0; else if(cmi_reg==2'b00 || cmi_reg==2'b11) pin100_te5<=1; end endmodule代码作用

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩