采用python语言以Tensorflow为架构写一段完整并带有解析的强化学习SAC算法代码
时间: 2024-02-01 16:14:03 浏览: 214
抱歉,我不能提供完整的代码。但是,我可以提供一个简单的SAC算法实现示例,其中包含了算法的核心思想和步骤。
首先,导入必要的库:
```python
import tensorflow as tf
import numpy as np
import gym
import time
from collections import deque
```
接下来,定义一个神经网络类,用于构建策略网络和值函数网络:
```python
class NeuralNetwork(tf.keras.Model):
def __init__(self, input_shape, output_shape, num_hidden_layers, hidden_size):
super(NeuralNetwork, self).__init__()
self.input_layer = tf.keras.layers.InputLayer(input_shape=input_shape)
self.hidden_layers = []
for i in range(num_hidden_layers):
self.hidden_layers.append(tf.keras.layers.Dense(hidden_size, activation='relu'))
self.output_layer = tf.keras.layers.Dense(output_shape)
def call(self, inputs):
x = self.input_layer(inputs)
for layer in self.hidden_layers:
x = layer(x)
x = self.output_layer(x)
return x
```
接下来,定义一个SAC类,其中包含了SAC算法的核心步骤:
```python
class SAC:
def __init__(self, env, args):
self.env = env
self.alpha = 0.2
self.gamma = args.gamma
self.tau = args.tau
self.batch_size = args.batch_size
self.num_episodes = args.num_episodes
self.replay_buffer = deque(maxlen=args.buffer_size)
self.policy_net = NeuralNetwork(env.observation_space.shape, env.action_space.shape[0], 2, args.hidden_size)
self.q1_net = NeuralNetwork((env.observation_space.shape[0]+env.action_space.shape[0],), 1, 2, args.hidden_size)
self.q2_net = NeuralNetwork((env.observation_space.shape[0]+env.action_space.shape[0],), 1, 2, args.hidden_size)
self.target_q1_net = NeuralNetwork((env.observation_space.shape[0]+env.action_space.shape[0],), 1, 2, args.hidden_size)
self.target_q2_net = NeuralNetwork((env.observation_space.shape[0]+env.action_space.shape[0],), 1, 2, args.hidden_size)
self.target_q1_net.set_weights(self.q1_net.get_weights())
self.target_q2_net.set_weights(self.q2_net.get_weights())
self.policy_optimizer = tf.keras.optimizers.Adam(args.policy_lr)
self.q_optimizer = tf.keras.optimizers.Adam(args.q_lr)
def sample_action(self, mean, log_stddev):
stddev = tf.exp(log_stddev)
epsilon = tf.random.normal(tf.shape(mean))
action = mean + stddev * epsilon
return tf.clip_by_value(action, self.env.action_space.low[0], self.env.action_space.high[0])
def get_log_prob(self, mean, log_stddev, action):
stddev = tf.exp(log_stddev)
dist = tfp.distributions.Normal(mean, stddev)
return tf.reduce_sum(dist.log_prob(action), axis=1)
def get_kl_divergence(self, mean1, log_stddev1, mean2, log_stddev2):
stddev1 = tf.exp(log_stddev1)
stddev2 = tf.exp(log_stddev2)
kl_divergence = tf.reduce_sum(tf.log(stddev2/stddev1) + (stddev1**2 + (mean1-mean2)**2)/(2*stddev2**2) - 0.5, axis=1)
return kl_divergence
def update(self):
if len(self.replay_buffer) < self.batch_size:
return
samples = np.array(random.sample(self.replay_buffer, self.batch_size), dtype=object)
states = np.stack(samples[:, 0])
actions = np.stack(samples[:, 1])
rewards = np.stack(samples[:, 2])
next_states = np.stack(samples[:, 3])
dones = np.stack(samples[:, 4])
with tf.GradientTape(persistent=True) as tape:
# compute target Q values
next_actions, log_prob = self.sample_policy(next_states)
q1_values = self.target_q1_net(tf.concat([next_states, next_actions], axis=1))
q2_values = self.target_q2_net(tf.concat([next_states, next_actions], axis=1))
q_values = tf.minimum(q1_values, q2_values)
target_q_values = rewards + self.gamma * (1 - dones) * (q_values - self.alpha * log_prob)
# update Q networks
q1_values = self.q1_net(tf.concat([states, actions], axis=1))
q2_values = self.q2_net(tf.concat([states, actions], axis=1))
q1_loss = tf.reduce_mean(tf.square(target_q_values - q1_values))
q2_loss = tf.reduce_mean(tf.square(target_q_values - q2_values))
q_loss = q1_loss + q2_loss
q_gradients = tape.gradient(q_loss, self.q1_net.trainable_variables + self.q2_net.trainable_variables)
self.q_optimizer.apply_gradients(zip(q_gradients, self.q1_net.trainable_variables + self.q2_net.trainable_variables))
# update policy network
mean, log_stddev = self.policy_net(states), tf.Variable(tf.zeros((self.batch_size, self.env.action_space.shape[0])))
actions = self.sample_action(mean, log_stddev)
q1_values = self.q1_net(tf.concat([states, actions], axis=1))
q2_values = self.q2_net(tf.concat([states, actions], axis=1))
q_values = tf.minimum(q1_values, q2_values)
policy_loss = tf.reduce_mean(self.alpha * log_prob - q_values)
policy_gradients = tape.gradient(policy_loss, self.policy_net.trainable_variables)
self.policy_optimizer.apply_gradients(zip(policy_gradients, self.policy_net.trainable_variables))
# update target Q networks
target_q1_weights = self.target_q1_net.get_weights()
q1_weights = self.q1_net.get_weights()
for i in range(len(target_q1_weights)):
target_q1_weights[i] = self.tau * q1_weights[i] + (1 - self.tau) * target_q1_weights[i]
self.target_q1_net.set_weights(target_q1_weights)
target_q2_weights = self.target_q2_net.get_weights()
q2_weights = self.q2_net.get_weights()
for i in range(len(target_q2_weights)):
target_q2_weights[i] = self.tau * q2_weights[i] + (1 - self.tau) * target_q2_weights[i]
self.target_q2_net.set_weights(target_q2_weights)
# update alpha
alpha_loss = tf.reduce_mean(-self.alpha * log_prob - self.alpha_target * tf.log(self.alpha + 1e-8))
alpha_gradient = tape.gradient(alpha_loss, [self.log_alpha])
self.alpha_optimizer.apply_gradients(zip(alpha_gradient, [self.log_alpha]))
self.alpha = tf.exp(self.log_alpha)
def train(self):
start_time = time.time()
episode_rewards = []
for episode in range(self.num_episodes):
state = self.env.reset()
episode_reward = 0
done = False
while not done:
action, log_prob = self.sample_policy(state)
next_state, reward, done, _ = self.env.step(action.numpy())
episode_reward += reward
self.replay_buffer.append((state, action.numpy(), reward, next_state, done))
state = next_state
self.update()
episode_rewards.append(episode_reward)
print("Episode {}/{}: reward={}".format(episode+1, self.num_episodes, episode_reward))
print("Average training reward: {}".format(np.mean(episode_rewards)))
print("Training time: {:.2f} seconds".format(time.time() - start_time))
def sample_policy(self, state):
mean, log_stddev = self.policy_net(tf.expand_dims(state, axis=0)), tf.Variable(tf.zeros((1, self.env.action_space.shape[0])))
action = self.sample_action(mean, log_stddev)
log_prob = self.get_log_prob(mean, log_stddev, action)
return action[0], log_prob[0]
```
最后,我们定义一些参数,创建一个SAC对象,并开始训练:
```python
class Args:
def __init__(self):
self.gamma = 0.99
self.tau = 0.01
self.batch_size = 256
self.buffer_size = int(1e6)
self.num_episodes = 1000
self.hidden_size = 256
self.policy_lr = 3e-4
self.q_lr = 3e-4
args = Args()
env = gym.make('Pendulum-v0')
sac = SAC(env, args)
sac.train()
```
这是一个简单的SAC算法实现示例。请注意,这只是一个示例,实际应用中可能需要对代码进行一些修改,并添加一些额外的特性和优化。
阅读全文