请采用python基于Tensorflow架构提供基于最大熵的SAC版本的强化学习算法代码
时间: 2023-12-22 22:03:52 浏览: 203
以下是基于TensorFlow实现的SAC算法代码,其中使用了最大熵策略。
```python
import tensorflow as tf
import tensorflow_probability as tfp
import numpy as np
class SAC:
def __init__(self, state_dim, action_dim, hidden_dim, gamma=0.99, alpha=0.2, lr=3e-4):
self.state_dim = state_dim
self.action_dim = action_dim
self.hidden_dim = hidden_dim
self.gamma = gamma
self.alpha = alpha
self.lr = lr
self.actor = self.build_actor()
self.critic = self.build_critic()
self.target_critic = self.build_critic()
self.actor_optimizer = tf.keras.optimizers.Adam(self.lr)
self.critic_optimizer = tf.keras.optimizers.Adam(self.lr)
def build_actor(self):
inputs = tf.keras.layers.Input(shape=(self.state_dim,))
x = tf.keras.layers.Dense(self.hidden_dim, activation='relu')(inputs)
x = tf.keras.layers.Dense(self.hidden_dim, activation='relu')(x)
mu = tf.keras.layers.Dense(self.action_dim, activation='tanh')(x)
sigma = tf.keras.layers.Dense(self.action_dim, activation='softplus')(x)
return tf.keras.Model(inputs=inputs, outputs=[mu, sigma])
def build_critic(self):
inputs = tf.keras.layers.Input(shape=(self.state_dim+self.action_dim,))
x = tf.keras.layers.Dense(self.hidden_dim, activation='relu')(inputs)
x = tf.keras.layers.Dense(self.hidden_dim, activation='relu')(x)
q = tf.keras.layers.Dense(1)(x)
return tf.keras.Model(inputs=inputs, outputs=q)
def get_action(self, state):
state = np.reshape(state, [1, self.state_dim])
mu, sigma = self.actor.predict(state)
dist = tfp.distributions.Normal(mu, sigma)
action = dist.sample()
return np.squeeze(action.numpy(), axis=0)
def train(self, batch):
state_batch = np.array([b[0] for b in batch])
action_batch = np.array([b[1] for b in batch])
reward_batch = np.array([b[2] for b in batch])
next_state_batch = np.array([b[3] for b in batch])
done_batch = np.array([b[4] for b in batch])
# Update critic
with tf.GradientTape() as tape:
next_actions_mu, next_actions_sigma = self.actor(next_state_batch)
next_actions_dist = tfp.distributions.Normal(next_actions_mu, next_actions_sigma)
next_actions = next_actions_dist.sample()
next_q_values = self.target_critic(tf.concat([next_state_batch, next_actions], axis=-1))
target_q_values = reward_batch + self.gamma * (1-done_batch) * next_q_values
target_q_values = tf.stop_gradient(target_q_values)
q_values = self.critic(tf.concat([state_batch, action_batch], axis=-1))
critic_loss = tf.reduce_mean(tf.square(q_values - target_q_values))
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
# Update actor
with tf.GradientTape() as tape:
actions_mu, actions_sigma = self.actor(state_batch)
actions_dist = tfp.distributions.Normal(actions_mu, actions_sigma)
actions = actions_dist.sample()
q_values = self.critic(tf.concat([state_batch, actions], axis=-1))
entropy = tf.reduce_mean(actions_dist.entropy())
actor_loss = -tf.reduce_mean(q_values + self.alpha * entropy)
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
# Update target critic
critic_weights = self.critic.get_weights()
target_critic_weights = self.target_critic.get_weights()
for i in range(len(critic_weights)):
target_critic_weights[i] = self.gamma * target_critic_weights[i] + (1 - self.gamma) * critic_weights[i]
self.target_critic.set_weights(target_critic_weights)
```
在这个实现中,使用了一个高斯分布来表示actor的策略,其中的均值通过神经网络输出。每个动作的方差通过另一个神经网络输出,并通过softplus函数保证方差为正。在训练过程中,通过使用最大熵策略来提高探索性,其中的熵系数通过超参数`alpha`来控制。同时,使用了一个critic网络来评估状态动作对的价值,其中的输入是状态和动作的拼接。使用延迟更新目标网络来减少更新过程中出现的震荡。在训练过程中,分别对actor和critic使用了不同的优化器进行更新。
阅读全文