基于最大熵原理的贝叶斯评定python代码
时间: 2023-12-15 13:56:41 浏览: 76
首先,最大熵原理是一种求解概率分布的方法,而贝叶斯评定是一种分类的方法,两者并不直接相关。但是可以基于最大熵原理来构建分类模型,然后使用贝叶斯评定来进行分类。
下面给出一个基于最大熵原理构建分类模型的Python代码,并使用贝叶斯评定来进行评估:
```python
import numpy as np
from collections import defaultdict
from scipy.optimize import minimize
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
class MaxEntropy:
def __init__(self, epsilon=1e-5, max_iteration=1000):
self.epsilon = epsilon
self.max_iteration = max_iteration
def fit(self, X, y):
self.labels = list(set(y))
self.feature2id = defaultdict(lambda: len(self.feature2id))
self.id2feature = {v: k for k, v in self.feature2id.items()}
self.n_features = len(self.feature2id)
self.n_labels = len(self.labels)
self.X = self.transform(X)
self.y = np.array(y)
self.w = np.zeros(self.n_features)
self._train()
def transform(self, X):
n_samples = X.shape[0]
X_new = []
for i in range(n_samples):
x = X[i]
x_new = [0] * self.n_features
for j in range(len(x)):
if x[j] in self.feature2id:
x_new[self.feature2id[x[j]]] = 1
X_new.append(x_new)
return np.array(X_new)
def _train(self):
n_samples = self.X.shape[0]
for iteration in range(self.max_iteration):
w_old = np.copy(self.w)
for i in range(n_samples):
x = self.X[i]
y = self.y[i]
p = self.predict_proba(x)
for j in range(self.n_features):
self.w[j] += self.epsilon * (self.expected_feature_value(j, x, y) - self.expected_feature_value(j, x, p))
if np.sum(np.abs(self.w - w_old)) < self.epsilon:
break
def predict_proba(self, x):
p = np.zeros(self.n_labels)
for y in range(self.n_labels):
s = np.dot(self.w, self.feature_value(x, y))
p[y] = np.exp(s)
p /= np.sum(p)
return p
def predict(self, X):
X_new = self.transform(X)
y_pred = []
for i in range(X_new.shape[0]):
p = self.predict_proba(X_new[i])
y_pred.append(self.labels[np.argmax(p)])
return y_pred
def feature_value(self, x, y):
f = np.zeros(self.n_features)
for i in range(len(x)):
if x[i] in self.feature2id:
f[self.feature2id[x[i]]] = int(y == self.labels.index(x[i]))
return f
def expected_feature_value(self, j, x, y):
p = self.predict_proba(x)
f = self.feature_value(x, y)
return np.dot(f, p) - self.expected_feature_value(j, x, p)
if __name__ == '__main__':
# 生成模拟数据
X = [['sunny', 'hot'], ['sunny', 'cool'], ['overcast', 'hot'], ['rainy', 'mild'], ['rainy', 'cool'], ['overcast', 'cool']]
y = ['no', 'yes', 'yes', 'yes', 'no', 'yes']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = MaxEntropy()
model.fit(X_train, y_train)
# 预测结果
y_pred = model.predict(X_test)
# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print('Accuracy:', accuracy)
```
上述代码中使用了一个简单的数据集,包含6个样本,每个样本有2个特征,共有2个类别。使用最大熵原理构建了一个分类模型,并使用贝叶斯评定进行评估。
阅读全文