请采用python基于Tensorflow架构提供基于最大熵的SAC强化学习算法代码
时间: 2023-10-03 15:02:22 浏览: 145
Python-TensorFlow实现的强化学习算法集锦
以下是基于TensorFlow构建的最大熵SAC强化学习算法的代码示例:
```
import tensorflow as tf
import numpy as np
import gym
# 定义常量
LR_A = 0.001 # actor的learning rate
LR_C = 0.002 # critic的learning rate
GAMMA = 0.9 # 折扣因子
TAU = 0.01 # 软更新的参数
MEMORY_CAPACITY = 10000 # 记忆库的大小
BATCH_SIZE = 32 # 批处理的大小
MAX_EPISODES = 200 # 最大的训练次数
MAX_EP_STEPS = 200 # 每次训练步数的最大值
# 定义Actor网络
class Actor(object):
def __init__(self, sess, n_features, n_actions, lr=0.001):
self.sess = sess
self.s = tf.placeholder(tf.float32, [None, n_features], 'state')
self.a = tf.placeholder(tf.float32, [None, n_actions], 'action')
self.td_error = tf.placeholder(tf.float32, None, 'td_error')
l1 = tf.layers.dense(self.s, 30, activation=tf.nn.relu)
mu = tf.layers.dense(l1, n_actions, activation=tf.nn.tanh)
sigma = tf.layers.dense(l1, n_actions, activation=tf.nn.softplus)
global_step = tf.Variable(0, trainable=False)
self.mu, self.sigma = tf.squeeze(mu*2), tf.squeeze(sigma+0.1)
self.normal_dist = tf.distributions.Normal(self.mu, self.sigma)
# 最大熵
self.log_prob = self.normal_dist.log_prob(self.a)
self.exp_v = self.log_prob * self.td_error
self.entropy = self.normal_dist.entropy()
self.loss = -(self.exp_v + 0.01*self.entropy)
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.loss, global_step=global_step)
def learn(self, s, a, td):
self.sess.run(self.train_op, {self.s: s, self.a: a, self.td_error: td})
def choose_action(self, s):
s = s[np.newaxis, :]
return self.sess.run(self.normal_dist.sample(), {self.s: s})[0]
# 定义Critic网络
class Critic(object):
def __init__(self, sess, n_features, lr=0.002):
self.sess = sess
self.s = tf.placeholder(tf.float32, [None, n_features], 'state')
self.v_ = tf.placeholder(tf.float32, [None, 1], 'v_next')
self.r = tf.placeholder(tf.float32, None, 'r')
l1 = tf.layers.dense(self.s, 30, activation=tf.nn.relu)
self.v = tf.layers.dense(l1, 1, activation=None)
td = tf.reduce_mean(self.r + GAMMA * self.v_ - self.v)
self.td_error = tf.reduce_mean(tf.square(td))
self.train_op = tf.train.AdamOptimizer(lr).minimize(self.td_error)
def learn(self, s, r, s_):
v_ = self.sess.run(self.v, {self.s: s_})
td_error, _ = self.sess.run([self.td_error, self.train_op],
{self.s: s, self.v_: v_, self.r: r})
return td_error
# 经验回放
class Memory(object):
def __init__(self, capacity, dims):
self.capacity = capacity
self.data = np.zeros((capacity, dims))
self.pointer = 0
def store_transition(self, s, a, r, s_):
transition = np.hstack((s, a, r, s_))
index = self.pointer % self.capacity
self.data[index, :] = transition
self.pointer += 1
def sample(self, n):
assert self.pointer >= self.capacity, '记忆库数据不够多'
indices = np.random.choice(self.capacity, size=n)
return self.data[indices, :]
# 主函数
if __name__ == "__main__":
env = gym.make('Pendulum-v0')
env.seed(1)
np.random.seed(1)
tf.set_random_seed(1)
sess = tf.Session()
# 创建actor和critic网络
actor = Actor(sess, env.observation_space.shape[0], env.action_space.shape[0], LR_A)
critic = Critic(sess, env.observation_space.shape[0], LR_C)
sess.run(tf.global_variables_initializer())
# 创建记忆库
memory = Memory(MEMORY_CAPACITY, dims=env.observation_space.shape[0] * 2 + env.action_space.shape[0] + 1)
# 记录训练过程中的奖励和误差
reward_list = []
td_error_list = []
for i in range(MAX_EPISODES):
s = env.reset()
ep_reward = 0
ep_td_error = 0
for j in range(MAX_EP_STEPS):
env.render()
# actor选择动作
a = actor.choose_action(s)
# 执行动作,得到下一个状态和奖励
s_, r, done, info = env.step(a)
# 存储经验
memory.store_transition(s, a, r/10, s_)
# 如果记忆库数据够多,开始训练
if memory.pointer > MEMORY_CAPACITY:
# 抽取记忆库数据
batch_memory = memory.sample(BATCH_SIZE)
# 更新critic网络
td_error = critic.learn(batch_memory[:, :env.observation_space.shape[0]],
batch_memory[:, -env.observation_space.shape[0]:],
batch_memory[:, -env.observation_space.shape[0]-1:-1])
ep_td_error += td_error
# 更新actor网络
actor.learn(batch_memory[:, :env.observation_space.shape[0]],
batch_memory[:, env.observation_space.shape[0]:env.observation_space.shape[0] + env.action_space.shape[0]],
td_error)
# 状态更新
s = s_
ep_reward += r
# 如果一次训练结束,输出信息
if j == MAX_EP_STEPS-1:
print('Episode:', i, ' Reward: %i' % int(ep_reward), ' TD Error: %.4f' % float(ep_td_error/BATCH_SIZE))
reward_list.append(ep_reward)
td_error_list.append(ep_td_error/BATCH_SIZE)
break
# 关闭环境
env.close()
sess.close()
```
这段代码实现了一个简单的Pendulum-v0任务的最大熵SAC强化学习算法,其中Actor和Critic网络均采用了单层神经网络,可以根据需要进行修改。在训练过程中,会输出每一次训练的奖励和TD误差。
阅读全文