matlab利用jpeg压缩图像代码
时间: 2023-06-15 12:07:41 浏览: 112
以下是使用MATLAB进行JPEG压缩的示例代码:
1. 读取图像文件
```matlab
I = imread('image.jpg'); % 读取图像文件
```
2. 对图像进行DCT变换
```matlab
J = dct2(I); % 对图像进行2D DCT变换
```
3. 将DCT系数量化
```matlab
quantization_matrix = [16 11 10 16 24 40 51 61; ...
12 12 14 19 26 58 60 55; ...
14 13 16 24 40 57 69 56; ...
14 17 22 29 51 87 80 62; ...
18 22 37 56 68 109 103 77; ...
24 35 55 64 81 104 113 92; ...
49 64 78 87 103 121 120 101; ...
72 92 95 98 112 100 103 99]; % JPEG标准量化矩阵
J_quantized = round(J ./ (quantization_matrix * quality)); % 对DCT系数进行量化
```
其中`quality`为压缩质量因子,值越小表示压缩质量越低,图像失真越大。
4. 将量化后的DCT系数进行Zigzag扫描
```matlab
zigzag_index = reshape(1:numel(J_quantized), size(J_quantized));
zigzag_index = fliplr(spdiags(fliplr(zigzag_index)));
zigzag_index(:,1:2:end) = flipud(zigzag_index(:,1:2:end));
zigzag_index(zigzag_index==0) = [];
J_zigzag = J_quantized(zigzag_index); % 对量化后的DCT系数进行Zigzag扫描
```
5. 进行霍夫曼编码
```matlab
[dict, avglen] = huffmandict({-1023:1023}, hist(J_zigzag, -1023:1023)); % 对Zigzag扫描后的DCT系数进行霍夫曼编码
comp = huffmanenco(J_zigzag, dict); % 对霍夫曼编码后的数据进行编码
```
6. 解码
```matlab
J_decompressed_zigzag = huffmandeco(comp, dict); % 解码
J_decompressed = zeros(size(J_quantized));
J_decompressed(zigzag_index) = J_decompressed_zigzag; % 反Zigzag扫描
J_decompressed = J_decompressed .* (quantization_matrix * quality); % 反量化
I_decompressed = idct2(J_decompressed); % 反DCT变换
```
7. 显示压缩前后的图像
```matlab
subplot(1,2,1), imshow(I), title('原图');
subplot(1,2,2), imshow(uint8(I_decompressed)), title('压缩后解压后图像');
```
完整代码:
```matlab
I = imread('image.jpg'); % 读取图像文件
quality = 50; % 压缩质量因子
quantization_matrix = [16 11 10 16 24 40 51 61; ...
12 12 14 19 26 58 60 55; ...
14 13 16 24 40 57 69 56; ...
14 17 22 29 51 87 80 62; ...
18 22 37 56 68 109 103 77; ...
24 35 55 64 81 104 113 92; ...
49 64 78 87 103 121 120 101; ...
72 92 95 98 112 100 103 99]; % JPEG标准量化矩阵
J = dct2(I); % 对图像进行2D DCT变换
J_quantized = round(J ./ (quantization_matrix * quality)); % 对DCT系数进行量化
zigzag_index = reshape(1:numel(J_quantized), size(J_quantized));
zigzag_index = fliplr(spdiags(fliplr(zigzag_index)));
zigzag_index(:,1:2:end) = flipud(zigzag_index(:,1:2:end));
zigzag_index(zigzag_index==0) = [];
J_zigzag = J_quantized(zigzag_index); % 对量化后的DCT系数进行Zigzag扫描
[dict, avglen] = huffmandict({-1023:1023}, hist(J_zigzag, -1023:1023)); % 对Zigzag扫描后的DCT系数进行霍夫曼编码
comp = huffmanenco(J_zigzag, dict); % 对霍夫曼编码后的数据进行编码
J_decompressed_zigzag = huffmandeco(comp, dict); % 解码
J_decompressed = zeros(size(J_quantized));
J_decompressed(zigzag_index) = J_decompressed_zigzag; % 反Zigzag扫描
J_decompressed = J_decompressed .* (quantization_matrix * quality); % 反量化
I_decompressed = idct2(J_decompressed); % 反DCT变换
subplot(1,2,1), imshow(I), title('原图');
subplot(1,2,2), imshow(uint8(I_decompressed)), title('压缩后解压后图像');
```
阅读全文