用c代码编写扫雷小游戏

时间: 2023-09-03 10:09:53 浏览: 69
好的,以下是一个简单的扫雷小游戏的C代码实现,仅供参考: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #define ROWS 9 // 行数 #define COLS 9 // 列数 #define EASY 10 // 简单模式雷数 #define MEDI 20 // 中等模式雷数 #define HARD 30 // 困难模式雷数 int board[ROWS + 2][COLS + 2]; // 扫雷棋盘 int show[ROWS + 2][COLS + 2]; // 显示棋盘 int mines; // 雷数 // 初始化游戏 void init_game(int level) { int i, j, x, y; mines = 0; for (i = 1; i <= ROWS; i++) { for (j = 1; j <= COLS; j++) { board[i][j] = 0; show[i][j] = 0; } } srand((unsigned)time(NULL)); for (i = 0; i < level; i++) { x = rand() % ROWS + 1; y = rand() % COLS + 1; if (board[x][y] == 0) { board[x][y] = -1; mines++; } else { i--; } } } // 显示棋盘 void show_board() { int i, j; printf(" "); for (i = 1; i <= COLS; i++) { printf("%d ", i); } printf("\n"); for (i = 1; i <= ROWS; i++) { printf("%d ", i); for (j = 1; j <= COLS; j++) { if (show[i][j] == 0) { printf("* "); } else if (show[i][j] == 1) { if (board[i][j] == -1) { printf("X "); } else { printf("%d ", board[i][j]); } } else { printf("F "); } } printf("\n"); } } // 统计周围雷数 int count_mines(int x, int y) { int i, j, count = 0; for (i = x - 1; i <= x + 1; i++) { for (j = y - 1; j <= y + 1; j++) { if (board[i][j] == -1) { count++; } } } return count; } // 插旗 void flag(int x, int y) { if (show[x][y] == 0) { show[x][y] = 2; } else if (show[x][y] == 2) { show[x][y] = 0; } } // 点击格子 void click(int x, int y) { if (board[x][y] == -1) { show[x][y] = 1; } else { int count = count_mines(x, y); show[x][y] = 1; if (count == 0) { int i, j; for (i = x - 1; i <= x + 1; i++) { for (j = y - 1; j <= y + 1; j++) { if (i >= 1 && i <= ROWS && j >= 1 && j <= COLS && show[i][j] == 0) { click(i, j); } } } } } } // 判断游戏是否结束 int is_gameover() { int i, j; for (i = 1; i <= ROWS; i++) { for (j = 1; j <= COLS; j++) { if (board[i][j] == -1 && show[i][j] == 1) { return 1; } } } return 0; } // 判断游戏是否胜利 int is_win() { int i, j, count = 0; for (i = 1; i <= ROWS; i++) { for (j = 1; j <= COLS; j++) { if (board[i][j] == -1 && show[i][j] == 2) { count++; } else if (board[i][j] != -1 && show[i][j] == 1) { count++; } } } return count == ROWS * COLS; } int main() { int level, x, y, mode = 1; printf("扫雷小游戏\n"); while (mode) { printf("请选择难度级别(1.简单 2.中等 3.困难):"); scanf("%d", &level); if (level == 1) { init_game(EASY); } else if (level == 2) { init_game(MEDI); } else if (level == 3) { init_game(HARD); } else { printf("输入有误,请重新选择难度级别!\n"); continue; } show_board(); while (!is_gameover() && !is_win()) { printf("请输入坐标(x y):"); scanf("%d %d", &x, &y); if (x < 1 || x > ROWS || y < 1 || y > COLS) { printf("输入有误,请重新输入!\n"); continue; } printf("请选择操作(1.插旗 2.点击格子):"); scanf("%d", &mode); if (mode == 1) { flag(x, y); } else if (mode == 2) { click(x, y); } else { printf("输入有误,请重新选择操作!\n"); } show_board(); } if (is_gameover()) { printf("游戏结束,你输了!\n"); } else if (is_win()) { printf("恭喜你,游戏胜利!\n"); } printf("是否继续游戏(1.是 0.否):"); scanf("%d", &mode); } printf("游戏结束,再见!\n"); return 0; } ``` 这个代码实现的扫雷小游戏比较简单,只有三种难度级别可供选择,且没有计时、排行榜等功能。如果需要实现更加完善的扫雷小游戏,可以参考其他扫雷游戏的代码实现。

相关推荐

最新推荐

recommend-type

扫雷小游戏的java编程

在Java编程中,扫雷小游戏的实现涉及多...以上是基于提供的代码片段对扫雷小游戏核心功能的解析,实际的实现可能包含更多的细节和优化。在编写这样的程序时,通常还需要考虑到错误处理、性能优化、用户交互体验等因素。
recommend-type

2024浙江省行政区划矢量图层-省市县乡镇四级行政区划数据下载-带python代码

2024最新浙江省行政区划矢量图层数据,包含省、市、县、乡镇四级行政区划数据下载,附带shp转geojson的python代码
recommend-type

年度销售计划表.xlsx.xlsx

销售统计,调查问卷,库存明细,跟进表,业绩统计表,差异分析 ,产品清单 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。
recommend-type

蓝牙BLE 4.0开发课程

蓝牙BLE 4.0课程
recommend-type

每日销售情况统计表.xls

销售统计,调查问卷,库存明细,跟进表,业绩统计表,差异分析 ,产品清单 适用人群:学习不同技术领域的小白或进阶学习者;可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。
recommend-type

.NET Windows编程:深度探索多线程技术

“20071010am--.NET Windows编程系列课程(15):多线程编程.pdf” 这篇PDF文档是关于.NET框架下的Windows编程,特别是多线程编程的教程。课程由邵志东讲解,适用于对.NET有一定基础的开发者,级别为Level200,即适合中等水平的学习者。课程内容涵盖从Windows编程基础到高级主题,如C#编程、图形编程、网络编程等,其中第12部分专门讨论多线程编程。 多线程编程是现代软件开发中的重要概念,它允许在一个进程中同时执行多个任务,从而提高程序的效率和响应性。线程是程序执行的基本单位,每个线程都有自己的堆栈和CPU寄存器状态,可以在进程的地址空间内独立运行。并发执行的线程并不意味着它们会同时占用CPU,而是通过快速切换(时间片轮转)在CPU上交替执行,给人一种同时运行的错觉。 线程池是一种优化的线程管理机制,用于高效管理和复用线程,避免频繁创建和销毁线程带来的开销。异步编程则是另一种利用多线程提升效率的方式,它能让程序在等待某个耗时操作完成时,继续执行其他任务,避免阻塞主线程。 在实际应用中,应当根据任务的性质来决定是否使用线程。例如,当有多个任务可以并行且互不依赖时,使用多线程能提高程序的并发能力。然而,如果多个线程需要竞争共享资源,那么可能会引入竞态条件和死锁,这时需要谨慎设计同步策略,如使用锁、信号量或条件变量等机制来协调线程间的访问。 课程中还可能涉及到如何创建和管理线程,如何设置和调整线程的优先级,以及如何处理线程间的通信和同步问题。此外,可能会讨论线程安全的数据结构和方法,以及如何避免常见的多线程问题,如死锁和活锁。 .NET框架提供了丰富的API来支持多线程编程,如System.Threading命名空间下的Thread类和ThreadPool类。开发者可以利用这些工具创建新的线程,或者使用ThreadPool进行任务调度,以实现更高效的并发执行。 这份课程是学习.NET环境下的多线程编程的理想资料,它不仅会介绍多线程的基础概念,还会深入探讨如何在实践中有效利用多线程,提升软件性能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验

![PHP数据库连接性能优化实战:从慢查询到极速响应,提升用户体验](https://ucc.alicdn.com/pic/developer-ecology/sidgjzoioz6ou_97b0465f5e534a94917c5521ceeae9b4.png?x-oss-process=image/resize,s_500,m_lfit) # 1. PHP数据库连接性能优化概述 在现代Web应用程序中,数据库连接性能对于应用程序的整体性能至关重要。优化PHP数据库连接可以提高应用程序的响应时间、吞吐量和稳定性。本文将深入探讨PHP数据库连接性能优化的理论基础和实践技巧,帮助您提升应用程序的
recommend-type

python xrange和range的区别

`xrange`和`range`都是Python中用于生成整数序列的函数,但在旧版的Python 2.x中,`xrange`更常用,而在新版的Python 3.x中,`range`成为了唯一的选择。 1. **内存效率**: - `xrange`: 这是一个迭代器,它不会一次性生成整个序列,而是按需计算下一个元素。这意味着当你遍历`xrange`时,它并不会占用大量内存。 - `range`: Python 3中的`range`也是生成器,但它会先创建整个列表,然后再返回。如果你需要处理非常大的数字范围,可能会消耗较多内存。 2. **语法**: - `xrange`:
recommend-type

遗传算法(GA)详解:自然进化启发的优化策略

遗传算法(Genetic Algorithms, GA)是一种启发式优化技术,其灵感来源于查尔斯·达尔文的自然选择进化理论。这种算法在解决复杂的优化问题时展现出强大的适应性和鲁棒性,特别是在数学编程、网络分析、分支与限界法等传统优化方法之外,提供了一种新颖且有效的解决方案。 GA的基本概念包括以下几个关键步骤: 1. **概念化算法**:遗传算法是基于生物进化的模拟,以个体(或解)的形式表示问题的可能答案。每个个体是一个可行的解决方案,由一组特征(也称为基因)组成,这些特征代表了解的属性。 2. **种群**:算法开始时,种群包含一定数量的随机生成的个体。这些个体通过fitness function(适应度函数)评估其解决方案的质量,即在解决问题上的优劣程度。 3. **繁殖**:根据每个个体的fitness值,算法选择父母进行繁殖。较高的适应度意味着更高的生存和繁殖机会,这确保了优秀的解在下一代中有更多的存在。 4. **竞争与选择**:在种群中,通过竞争和选择机制,最适应的个体被挑选出来,准备进入下一轮的遗传过程。 5. **生存与淘汰**:新生成的后代个体数量与上一代相同,而旧的一代将被淘汰。这个过程模仿了自然选择中的生存斗争,只有最适应环境的个体得以延续。 6. **遗传与变异**:新个体的基因组合来自两个或多个父母,这是一个遗传的过程。同时,随机变异也可能引入新的基因,增加了搜索空间的多样性,有助于跳出局部最优。 7. **迭代与收敛**:遗传算法通常通过多代迭代进行,每一代都可能导致种群结构的变化。如果设计得当,算法会逐渐收敛到全局最优解或者接近最优解。 8. **应用领域广泛**:GA可用于解决各种优化问题,如网络路由、机器学习中的参数优化、工程设计、生产调度等。它与其他优化技术(如网络分析、分支与-bound、模拟退火和禁忌搜索)相辅相成,提供了解决复杂问题的多样化手段。 遗传算法作为一种模仿自然界的优化工具,不仅具备内在的鲁棒性,而且能够处理非线性、非凸和多目标优化问题,具有很高的实用价值。通过深入理解其核心原理和操作流程,我们可以有效地将这种技术应用于实际的IT项目中,提高解决问题的效率和质量。