激活函数选项:activation : {'identity', 'logistic', 'tanh', 'relu'}, default='relu' model = Pipeline([('Scaler',StandardScaler()),('MLP',MLPRegressor(hidden_layer_sizes=500, activation='relu',solver='adam', batch_size='auto', learning_rate='constant', learning_rate_init=0.01, power_t=0.5, max_iter=1000, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10))]) clf = model.fit(X_train,Y_train)哪些参数可以修改
时间: 2024-01-30 10:02:09 浏览: 74
Keras 中Leaky ReLU等高级激活函数的用法
您可以修改以下参数:
- hidden_layer_sizes:神经网络的层数和每层神经元的数量
- activation:激活函数选项,可选的包括 'identity', 'logistic', 'tanh', 'relu'
- solver:权重优化方法,可选的包括 'lbfgs', 'sgd', 'adam'
- learning_rate:学习率的初始值,可选的包括 'constant', 'invscaling', 'adaptive'
- max_iter:最大的迭代次数
- momentum:动量参数,用于加速权重的更新
- early_stopping:是否启用早停法,可选的包括 True 和 False
- validation_fraction:用于早停法的验证集的比例
- n_iter_no_change:连续多少次迭代没有改善时停止训练。
阅读全文