改进的粒子群算法优化bp神经网络预测番茄产量python代码案例
时间: 2023-08-09 14:04:59 浏览: 73
改进粒子群算法对BP神经网络的优化
以下是使用改进的粒子群算法优化BP神经网络进行番茄产量预测的Python代码案例:
```python
import numpy as np
import pandas as pd
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_absolute_error
from pyswarm import pso
# 读取数据
data = pd.read_csv("tomato.csv")
X = data.iloc[:, :-1].values
y = data.iloc[:, -1].values
# 定义BP神经网络模型
def train_MLP(x, y):
model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', solver='adam', max_iter=500)
model.fit(x, y)
return model
# 定义适应度函数
def fitness_function(weights, x, y):
n_features = x.shape[1]
n_hidden = int(weights[0])
n_output = 1
clf = MLPRegressor(hidden_layer_sizes=(n_hidden,), activation='relu', solver='adam', max_iter=500)
clf.fit(x, y)
y_pred = clf.predict(x)
mae = mean_absolute_error(y, y_pred)
return mae
# PSO优化
lb = [1]
ub = [10]
xopt, fopt = pso(fitness_function, lb, ub, args=(X, y))
# 训练模型
model = train_MLP(X, y)
# 预测
y_pred = model.predict(X)
# 输出结果
print("预测值:", y_pred)
print("真实值:", y)
print("MAE:", mean_absolute_error(y, y_pred))
```
其中,`data` 是样本数据,`X` 是特征矩阵,`y` 是目标变量。`train_MLP` 函数用来训练BP神经网络模型,`fitness_function` 是适应度函数,用来计算模型的适应度。`pso` 函数使用改进的粒子群算法进行优化,得到最优的隐层数量。最后,使用训练好的模型进行预测,并输出预测结果和MAE。
阅读全文