用python实现knn(k,in_data,out_data)函数
时间: 2023-05-30 17:07:19 浏览: 167
以下是用Python实现KNN函数的代码:
```python
import numpy as np
def knn(k, in_data, out_data):
"""
K-Nearest Neighbors algorithm implementation.
Parameters:
k (int): Number of nearest neighbors to consider.
in_data (numpy.ndarray): Input data, shape (n_samples, n_features).
out_data (numpy.ndarray): Output data, shape (n_samples,).
Returns:
numpy.ndarray: Predicted output data, shape (n_samples,).
"""
# Calculate pairwise distances between input samples and output samples.
dists = np.sqrt(np.sum((in_data[:, None] - out_data) ** 2, axis=2))
# Find indices of k nearest neighbors for each output sample.
nn_indices = np.argsort(dists, axis=0)[:k]
# Get corresponding output values for each nearest neighbor.
nn_outputs = in_data[nn_indices]
# Calculate the mean of the nearest neighbors for each output sample.
pred_outputs = np.mean(nn_outputs, axis=1)
return pred_outputs
```
这个函数接受三个参数:k(要考虑的最近邻居数),in_data(输入数据)和out_data(输出数据)。该函数使用欧几里得距离计算输入样本和输出样本之间的距离,并找到每个输出样本的k个最近邻居的索引。然后,它获取每个最近邻居的相应输出值,并计算每个输出样本的最近邻居的平均值,作为该输出样本的预测值。最后,该函数返回一个预测输出数据的数组。
阅读全文