将四位维数据转换为二维阵列点,前两维横向和纵向间距为x1和y1,最大排放数量分别为Nx1和Ny1,第三维和第四维横纵向间距为x2和y2,最大排放数量分别为Nx2和Ny2,依次类推更高维的情况,代码示例
时间: 2024-03-01 17:53:11 浏览: 116
以下是将多维数据转换为二维阵列点的 Python 代码示例:
```python
def multi_dim_to_2d(data, spacing, max_count):
ndim = len(data.shape)
assert ndim % 2 == 0, "The number of dimensions must be even."
# Calculate the total number of points in each dimension
total_points = []
for i in range(ndim // 2):
total_points.append(min(data.shape[i], max_count[i]))
total_points.append(min(data.shape[i + ndim // 2], max_count[i + ndim // 2]))
# Calculate the spacing between each point in each dimension
point_spacing = []
for i in range(ndim // 2):
point_spacing.append(spacing[i])
point_spacing.append(spacing[i + ndim // 2])
# Create a grid of points in two dimensions
meshgrid = np.meshgrid(*[np.arange(n) for n in total_points], indexing='ij')
points_2d = np.empty((np.prod(total_points), 2), dtype=float)
for i in range(len(point_spacing)):
points_2d[:, i % 2] += point_spacing[i] * meshgrid[i].ravel()
return points_2d
```
其中,`data` 是多维数据,`spacing` 是每个维度之间的间距,`max_count` 是每个维度的最大排放数量。函数返回一个二维数组 `points_2d`,其中包含所有转换后的点。
阅读全文