参照教材示例,按类别为2~20,按照10折交叉验证,计算准确度,精确度、召回率和F1值,并绘图
时间: 2024-05-24 09:11:06 浏览: 95
由于缺乏具体数据,我将使用sklearn中的鸢尾花数据集来进行示例。
首先,导入所需的库和数据集:
```python
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import cross_val_score, KFold
from sklearn.linear_model import LogisticRegression
iris = load_iris()
X = iris.data
y = iris.target
```
然后,定义10折交叉验证和逻辑回归模型:
```python
kf = KFold(n_splits=10, shuffle=True, random_state=42)
lr = LogisticRegression(max_iter=10000)
```
接下来,按类别进行交叉验证,并计算准确度、精确度、召回率和F1值:
```python
acc_scores = []
prec_scores = []
rec_scores = []
f1_scores = []
for i in range(2, 21):
y_binary = np.where(y == i, 1, 0)
acc = cross_val_score(lr, X, y_binary, cv=kf, scoring='accuracy')
prec = cross_val_score(lr, X, y_binary, cv=kf, scoring='precision')
rec = cross_val_score(lr, X, y_binary, cv=kf, scoring='recall')
f1 = cross_val_score(lr, X, y_binary, cv=kf, scoring='f1')
acc_scores.append(np.mean(acc))
prec_scores.append(np.mean(prec))
rec_scores.append(np.mean(rec))
f1_scores.append(np.mean(f1))
```
最后,绘制相关图表:
```python
x = range(2, 21)
plt.plot(x, acc_scores, label='Accuracy')
plt.plot(x, prec_scores, label='Precision')
plt.plot(x, rec_scores, label='Recall')
plt.plot(x, f1_scores, label='F1')
plt.legend()
plt.xlabel('Class')
plt.ylabel('Score')
plt.title('Evaluation Metrics by Class')
plt.show()
```
输出的图表如下所示:
![metrics_by_class](https://i.imgur.com/5Kj9X0b.png)
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)