densenet121 mindspore
时间: 2023-11-05 10:04:22 浏览: 97
您想了解DenseNet121在MindSpore中的相关信息吗?我可以为您提供一些基本的介绍。
DenseNet121是一种深度神经网络模型,由于其参数少、速度快、准确率高等优点而受到广泛关注。MindSpore是华为公司开发的新一代AI计算框架,支持深度学习、机器学习等多种任务,可在多种硬件设备上运行。
在MindSpore中,您可以使用DenseNet121模型进行图像分类任务。MindSpore提供了DenseNet121模型的预训练权重,您可以使用这些权重来加速模型的训练过程。同时,MindSpore还提供了一系列的API和工具,方便您使用和调试DenseNet121模型。
希望这些信息能够帮助您更好地了解DenseNet121在MindSpore中的相关情况。如果您有其他问题,可以随时问我哦。
相关问题
mindspore densenet代码
以下是用MindSpore实现DenseNet的代码:
```
import mindspore.nn as nn
from mindspore.ops import operations as P
class DenseLayer(nn.Cell):
def __init__(self, in_channels, growth_rate):
super(DenseLayer, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=growth_rate, kernel_size=3, padding=1, has_bias=False)
self.relu = nn.ReLU()
self.concat = P.Concat(axis=1)
def construct(self, x):
out = self.conv(x)
out = self.relu(out)
out = self.concat((x, out))
return out
class DenseBlock(nn.Cell):
def __init__(self, in_channels, growth_rate, num_layers):
super(DenseBlock, self).__init__()
self.layers = nn.SequentialCell()
for i in range(num_layers):
self.layers.append(DenseLayer(in_channels + i * growth_rate, growth_rate))
def construct(self, x):
out = x
for layer in self.layers:
out = layer(out)
return out
class TransitionLayer(nn.Cell):
def __init__(self, in_channels, out_channels):
super(TransitionLayer, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, has_bias=False)
self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
self.relu = nn.ReLU()
def construct(self, x):
out = self.conv(x)
out = self.avg_pool(out)
out = self.relu(out)
return out
class DenseNet(nn.Cell):
def __init__(self, num_classes=10, growth_rate=12, block_config=(6, 12, 24, 16)):
super(DenseNet, self).__init__()
self.conv = nn.Conv2d(in_channels=3, out_channels=2 * growth_rate, kernel_size=3, padding=1, has_bias=False)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.dense_block1 = DenseBlock(2 * growth_rate, growth_rate, block_config[0])
in_channels1 = 2 * growth_rate + block_config[0] * growth_rate
out_channels1 = in_channels1 // 2
self.trans_layer1 = TransitionLayer(in_channels1, out_channels1)
self.dense_block2 = DenseBlock(out_channels1, growth_rate, block_config[1])
in_channels2 = out_channels1 + block_config[1] * growth_rate
out_channels2 = in_channels2 // 2
self.trans_layer2 = TransitionLayer(in_channels2, out_channels2)
self.dense_block3 = DenseBlock(out_channels2, growth_rate, block_config[2])
in_channels3 = out_channels2 + block_config[2] * growth_rate
out_channels3 = in_channels3 // 2
self.trans_layer3 = TransitionLayer(in_channels3, out_channels3)
self.dense_block4 = DenseBlock(out_channels3, growth_rate, block_config[3])
in_channels4 = out_channels3 + block_config[3] * growth_rate
self.avg_pool = nn.AvgPool2d(kernel_size=8)
self.flatten = nn.Flatten()
self.fc = nn.Dense(in_channels4, num_classes)
def construct(self, x):
out = self.conv(x)
out = self.relu(out)
out = self.pool(out)
out = self.dense_block1(out)
out = self.trans_layer1(out)
out = self.dense_block2(out)
out = self.trans_layer2(out)
out = self.dense_block3(out)
out = self.trans_layer3(out)
out = self.dense_block4(out)
out = self.avg_pool(out)
out = self.flatten(out)
out = self.fc(out)
return out
```
这是一个包含了DenseNet各个模块的代码,其中包括了DenseLayer、DenseBlock、TransitionLayer和DenseNet等模块的实现。然后,我们可以通过实例化DenseNet并传入相应的参数来构建模型。
mindspore 构建lstm模型
以下是使用MindSpore构建LSTM模型的示例代码:
```python
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
class LSTM(nn.Cell):
def __init__(self, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.flatten = nn.Flatten()
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, has_bias=True, batch_first=True, bidirectional=False)
self.fc = nn.Dense(hidden_size, 1)
self.sigmoid = P.Sigmoid()
def construct(self, x):
x = self.flatten(x)
h0 = Tensor.zeros((self.num_layers, x.shape[0], self.hidden_size))
c0 = Tensor.zeros((self.num_layers, x.shape[0], self.hidden_size))
output, _ = self.lstm(x, (h0, c0))
output = self.fc(output[:, -1, :])
output = self.sigmoid(output)
return output
```
其中,LSTM类继承自MindSpore的nn.Cell类,实现了LSTM模型的构建。构造函数中的input_size表示输入数据的特征数,hidden_size表示LSTM单元的隐藏层大小,num_layers表示LSTM模型的层数。
在construct方法中,首先使用MindSpore的nn.Flatten层将输入数据展平成二维张量,然后使用nn.LSTM层实现LSTM模型的前向传播,输出张量的形状为(batch_size, seq_length, hidden_size)。接着,使用nn.Dense层将输出张量映射到一个单一的输出值,最后使用MindSpore的Sigmoid操作对输出进行激活。
使用该模型可以进行二分类问题的训练和预测。例如,可以使用MindSpore的Adam优化器和BinaryCrossEntropy损失函数对该模型进行训练:
```python
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Model, context
from mindspore.train.callback import LossMonitor
from mindspore.nn.metrics import Accuracy
from mindspore import dataset as ds
# define your dataset and dataloader
net = LSTM(input_size=10, hidden_size=32, num_layers=2)
criterion = nn.BCELoss()
optimizer = nn.Adam(params=net.trainable_params())
model = Model(net, criterion, optimizer, metrics={"acc": Accuracy()})
model.train(2, train_dataset, callbacks=[LossMonitor(100)], dataset_sink_mode=True)
```
其中,train_dataset是训练数据集,可以使用MindSpore的dataset模块进行加载。在训练过程中,每100个batch会打印一次训练损失,训练2个epoch。
阅读全文