def training_step(self, batch, batch_idx, optimizer_idx): # https://github.com/pytorch/pytorch/issues/37142 # try not to fool the heuristics x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) if optimizer_idx == 0: # autoencode aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train", predicted_indices=ind) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) return aeloss if optimizer_idx == 1: # discriminator discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) return discloss解析

时间: 2024-02-14 08:17:51 浏览: 34
这段代码是PyTorch Lightning中的一个训练步骤函数,用于实现模型的训练过程。该函数接受三个参数:batch、batch_idx和optimizer_idx,分别表示当前训练的批次数据、批次数据的索引和优化器的索引。 在函数内部,首先通过self.get_input(batch, self.image_key)获取输入数据x,并调用self(x, return_pred_indices=True)进行前向传播,得到重构数据xrec、量化损失qloss和预测的编码索引ind。 接下来,根据优化器的索引,分别计算自编码器和判别器的损失函数。如果优化器索引为0,则计算自编码器的损失函数,并调用self.loss函数进行计算。计算完成后,将损失函数的值返回,并使用self.log_dict将损失值记录到日志中。如果优化器索引为1,则计算判别器的损失函数,并调用self.loss函数进行计算。计算完成后,将损失函数的值返回,并使用self.log_dict将损失值记录到日志中。 最终,training_step函数返回损失函数的值,用于在训练过程中更新模型的参数。
相关问题

把这个网页翻译成中文:https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

好的,以下是网页的中文翻译: # 序列模型和长短时记忆网络 ## 序列数据和循环神经网络 自然语言处理中的大多数任务都涉及到对序列数据的处理。序列数据是指按照一定顺序排列的数据,比如一句话中的单词、一篇文章中的句子等。 传统的深度学习模型很难处理序列数据,因为它们无法考虑到序列中前后单元之间的关系。为了解决这个问题,循环神经网络 (Recurrent Neural Networks, RNNs) 被提出。 循环神经网络是一种具有记忆功能的神经网络,它可以处理序列数据,同时考虑到了序列中前后单元之间的关系。RNNs 在自然语言处理中得到了广泛应用,比如文本分类、语音识别、机器翻译等。 ## 长短时记忆网络 尽管 RNNs 在处理序列数据方面表现很好,但是它们存在消失梯度 (Vanishing Gradient) 问题,当序列长度较长时,这个问题会变得尤为严重。长短时记忆网络 (Long Short-Term Memory, LSTM) 是一种能够缓解消失梯度问题的循环神经网络。 LSTM 通过引入门 (gate) 机制,控制了信息的流动,从而保留了序列中的长期依赖关系。LSTM 在自然语言处理中的表现非常优秀,比如情感分析、命名实体识别等任务。 ## PyTorch 中的 LSTM 在 PyTorch 中,我们可以使用 torch.nn.LSTM 类来构建 LSTM 模型。LSTM 类的参数说明如下: ```python torch.nn.LSTM(input_size, hidden_size, num_layers, bias, batch_first, dropout, bidirectional) ``` 其中, - `input_size`:输入数据的特征维度。 - `hidden_size`:隐状态的特征维度。 - `num_layers`:循环神经网络的层数。 - `bias`:是否使用偏置项。 - `batch_first`:是否将 batch 放在第一维。 - `dropout`:是否进行 dropout。 - `bidirectional`:是否使用双向 LSTM。 下面是一个使用 LSTM 进行文本分类的示例:

class MyDataSet(Dataset): """自定义数据集""" def __init__(self, images_path: list, images_class: list, transform=None): self.images_path = images_path self.images_class = images_class self.transform = transform def __len__(self): return len(self.images_path) def __getitem__(self, item): img = Image.open(self.images_path[item]) # RGB为彩色图片,L为灰度图片 if img.mode != 'RGB': raise ValueError("image: {} isn't RGB mode.".format(self.images_path[item])) label = self.images_class[item] if self.transform is not None: img = self.transform(img) print(label) return img, label @staticmethod def collate_fn(batch): # 官方实现的default_collate可以参考 # https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.py images, labels = tuple(zip(*batch)) images = torch.stack(images, dim=0) labels = torch.as_tensor(np.array(labels[:, 0])) return images, labels

这段代码是一个自定义的 PyTorch 数据集类 `MyDataSet`,它继承自 PyTorch 内置的 `Dataset` 类。在 `__init__` 方法中,该类接收两个列表 `images_path` 和 `images_class`,分别代表图片的路径和对应的类别。还可以传入一个可选的 `transform` 参数,用于对图片进行预处理。在 `__getitem__` 方法中,该类会根据索引 `item` 加载对应路径的图片,并返回预处理后的图片张量和对应的类别标签。 这个类还定义了一个静态方法 `collate_fn`,它接收一个批次的数据,对其进行处理并返回。在这个方法中,首先使用 Python 的 `zip` 函数和 `*` 运算符将批次中的图片张量和对应的标签分别打包成两个元组。然后使用 `torch.stack` 函数将图片张量拼接成一个大的张量,`dim=0` 表示在第 0 维进行拼接。最后,代码使用 NumPy 的 `array` 函数将标签列表转换为 NumPy 数组,然后使用 `[:, 0]` 语法取出了每个元组中的第一个标签,最后使用 `torch.as_tensor` 函数将其转换为 PyTorch 张量。 这个自定义数据集类的实现比较简单,但需要注意一些细节,比如 `zip` 函数的使用,`labels[:, 0]` 的含义等等。

相关推荐

代码解释并给每行代码添加注释:class CosineAnnealingWarmbootingLR: def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

最新推荐

recommend-type

tensorflow中next_batch的具体使用

本篇文章主要介绍了tensorflow中next_batch的具体使用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
recommend-type

【图像融合】加权算法高分辨率和低分辨率图像融合(含清晰度)【含Matlab源码 4405期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

源代码-BASISBBS最易ASP论坛 v1.0.7.zip

源代码-BASISBBS最易ASP论坛 v1.0.7.zip
recommend-type

【图像去噪】高斯滤波+均值滤波+中值滤波+双边滤波图像去噪(含信噪比)【含Matlab源码 2747期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

华为2019创新大赛的工程文件+各种模型的backbone和tricks

华为大模型 华为2019创新大赛的工程文件+各种模型的backbone和tricks 华为2019创新大赛的工程文件+各种模型的backbone和tricks 华为2019创新大赛的工程文件+各种模型的backbone和tricks 华为2019创新大赛的工程文件+各种模型的backbone和tricks 华为2019创新大赛的工程文件+各种模型的backbone和tricks 华为2019创新大赛的工程文件+各种模型的backbone和tricks
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。