def training_step(self, batch, batch_idx, optimizer_idx): # https://github.com/pytorch/pytorch/issues/37142 # try not to fool the heuristics x = self.get_input(batch, self.image_key) xrec, qloss, ind = self(x, return_pred_indices=True) if optimizer_idx == 0: # autoencode aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train", predicted_indices=ind) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) return aeloss if optimizer_idx == 1: # discriminator discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) return discloss解析
时间: 2024-02-14 19:17:51 浏览: 228
这段代码是PyTorch Lightning中的一个训练步骤函数,用于实现模型的训练过程。该函数接受三个参数:batch、batch_idx和optimizer_idx,分别表示当前训练的批次数据、批次数据的索引和优化器的索引。
在函数内部,首先通过self.get_input(batch, self.image_key)获取输入数据x,并调用self(x, return_pred_indices=True)进行前向传播,得到重构数据xrec、量化损失qloss和预测的编码索引ind。
接下来,根据优化器的索引,分别计算自编码器和判别器的损失函数。如果优化器索引为0,则计算自编码器的损失函数,并调用self.loss函数进行计算。计算完成后,将损失函数的值返回,并使用self.log_dict将损失值记录到日志中。如果优化器索引为1,则计算判别器的损失函数,并调用self.loss函数进行计算。计算完成后,将损失函数的值返回,并使用self.log_dict将损失值记录到日志中。
最终,training_step函数返回损失函数的值,用于在训练过程中更新模型的参数。
相关问题
基于pytorch环境用arcface训练lfw模型,并保存模型,同时测试模型的完整代码
以下是基于 PyTorch 环境下使用 ArcFace 训练 LFW 数据集并保存模型的示例代码,同时也包含了测试模型的部分。
首先,需要安装必要的 PyTorch 和 torchvision 库:
```
pip install torch torchvision
```
接着,我们下载并解压 LFW 数据集,可以从以下链接获取:
http://vis-www.cs.umass.edu/lfw/lfw.tgz
解压后得到的目录结构应该是这样的:
```
lfw/
person1/
image1.jpg
image2.jpg
...
person2/
image1.jpg
image2.jpg
...
...
```
其中,每个人的照片都放在一个单独的目录下,目录名即为人名。
接下来是训练代码:
```python
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
from PIL import Image
import numpy as np
# 定义一些超参数
batch_size = 32
num_workers = 4
num_epochs = 10
embedding_size = 512
lr = 0.1
momentum = 0.9
weight_decay = 5e-4
num_classes = 5749 # LFW 数据集中的人数
# 定义数据预处理
transform = transforms.Compose([
transforms.Resize((112, 112)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 定义数据集类
class LFWDataset(Dataset):
def __init__(self, root):
self.root = root
self.img_paths = []
self.labels = []
self.class_dict = {}
self.class_idx = 0
# 遍历数据集,获取所有图片路径和标签
for person_name in os.listdir(root):
person_dir = os.path.join(root, person_name)
if not os.path.isdir(person_dir):
continue
img_names = os.listdir(person_dir)
self.class_dict[person_name] = self.class_idx
self.class_idx += 1
for img_name in img_names:
img_path = os.path.join(person_dir, img_name)
self.img_paths.append(img_path)
self.labels.append(self.class_dict[person_name])
def __getitem__(self, index):
img_path = self.img_paths[index]
label = self.labels[index]
img = Image.open(img_path).convert('RGB')
img = transform(img)
return img, label
def __len__(self):
return len(self.img_paths)
# 定义模型
class ArcFace(nn.Module):
def __init__(self, num_classes, embedding_size):
super(ArcFace, self).__init__()
self.num_classes = num_classes
self.embedding_size = embedding_size
self.backbone = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1))
)
self.fc = nn.Linear(512, embedding_size)
self.fc_arc = nn.Linear(embedding_size, num_classes)
def forward(self, x, labels=None):
x = self.backbone(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
if labels is not None:
w = self.fc_arc.weight
ww = torch.norm(w, dim=1, keepdim=True)
w = w / ww
x_norm = torch.norm(x, dim=1, keepdim=True)
x = x / x_norm
cos_theta = torch.matmul(x, w.transpose(0, 1))
cos_theta = cos_theta.clamp(-1, 1)
theta = torch.acos(cos_theta)
one_hot = torch.zeros_like(cos_theta)
one_hot.scatter_(1, labels.view(-1, 1), 1)
if x.is_cuda:
one_hot = one_hot.cuda()
target_logit = cos_theta * one_hot + (1 - one_hot) * (torch.cos(theta + 0.5))
output = self.fc_arc(target_logit)
else:
output = self.fc_arc(x)
return output
# 创建数据集和 DataLoader
train_dataset = LFWDataset('lfw')
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
# 创建模型和优化器
model = ArcFace(num_classes, embedding_size)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay)
# 将模型放入 GPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model.to(device)
# 开始训练
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_dataloader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images, labels)
loss = nn.CrossEntropyLoss()(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 10 == 0:
print('Epoch [%d/%d], Iter [%d/%d] Loss: %.4f'
% (epoch + 1, num_epochs, i + 1, len(train_dataloader), loss.item()))
# 保存模型
torch.save(model.state_dict(), 'arcface_lfw.pth')
```
训练完成后,我们可以使用以下代码来测试模型:
```python
# 加载模型
model = ArcFace(num_classes, embedding_size)
model.load_state_dict(torch.load('arcface_lfw.pth'))
model.to(device)
# 创建测试集
class LFWTestDataset(Dataset):
def __init__(self, pairs_path, root):
self.pairs_path = pairs_path
self.root = root
self.transform = transform
with open(pairs_path) as f:
pairs_lines = f.readlines()
self.pairs = []
for line in pairs_lines[1:]:
pair = line.strip().split('\t')
if len(pair) == 3:
self.pairs.append((os.path.join(root, pair[0], pair[1] + '.jpg'),
os.path.join(root, pair[0], pair[2] + '.jpg')))
elif len(pair) == 4:
self.pairs.append((os.path.join(root, pair[0], pair[1] + '.jpg'),
os.path.join(root, pair[2], pair[3] + '.jpg')))
else:
raise ValueError('Invalid pair: %s' % line.strip())
def __len__(self):
return len(self.pairs)
def __getitem__(self, index):
pair = self.pairs[index]
img1 = Image.open(pair[0]).convert('RGB')
img2 = Image.open(pair[1]).convert('RGB')
img1 = self.transform(img1)
img2 = self.transform(img2)
return img1, img2
# 定义测试函数
def test(model, pairs_path, root):
model.eval()
test_dataset = LFWTestDataset(pairs_path, root)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=num_workers)
correct = 0
total = 0
with torch.no_grad():
for images1, images2 in test_dataloader:
images1 = images1.to(device)
images2 = images2.to(device)
embeddings1 = model(images1)
embeddings2 = model(images2)
distances = torch.sum((embeddings1 - embeddings2) ** 2, dim=1)
for i in range(len(distances)):
if test_dataset.pairs[total + i][0].split('/')[-2] == test_dataset.pairs[total + i][1].split('/')[-2]:
if distances[i] < 1.0:
correct += 1
else:
if distances[i] > 1.0:
correct += 1
total += len(distances)
acc = 100.0 * correct / total
print('Accuracy: %.2f%% (%d/%d)' % (acc, correct, total))
# 测试模型
test(model, 'lfw/pairs.txt', 'lfw')
```
注意,上面的 `test` 函数中,我们使用了 LFW 数据集中的 `pairs.txt` 文件,这个文件包含了若干行对比图片的路径和标签,我们可以根据这些对比图片计算模型的准确率。
完整代码可在以下链接中找到:
https://github.com/JNingWei/arcface-lfw-pytorch
基于pytorch水果图像识别系统,数据集使用Fruits 360,并将训练好的模型应用到图片识别界面中,具体代码实现
好的,下面是基于PyTorch的水果图像识别系统的代码实现,包括数据集使用Fruits 360和将训练好的模型应用到图片识别界面中。
首先需要安装以下依赖库:
```python
pip install torch torchvision matplotlib numpy Pillow PyQt5
```
接下来,我们需要下载Fruits 360数据集。可以从Kaggle下载(https://www.kaggle.com/moltean/fruits),或者使用以下代码从GitHub上下载:
```python
!git clone https://github.com/Horea94/Fruit-Images-Dataset.git
```
下载完成后,我们需要对数据集进行预处理和划分。以下是完整的数据预处理和划分代码:
```python
import os
import shutil
import random
# 定义数据集路径
data_path = './Fruit-Images-Dataset'
# 定义训练集和测试集路径
train_path = './fruits-360/Training'
test_path = './fruits-360/Test'
# 定义训练集和测试集比例
train_ratio = 0.8
test_ratio = 0.2
# 获取所有类别
classes = os.listdir(data_path)
# 创建训练集和测试集目录
os.makedirs(train_path, exist_ok=True)
os.makedirs(test_path, exist_ok=True)
# 遍历每个类别
for cls in classes:
cls_path = os.path.join(data_path, cls)
imgs = os.listdir(cls_path)
num_imgs = len(imgs)
num_train = int(num_imgs * train_ratio)
num_test = num_imgs - num_train
# 创建训练集和测试集子目录
train_cls_path = os.path.join(train_path, cls)
test_cls_path = os.path.join(test_path, cls)
os.makedirs(train_cls_path, exist_ok=True)
os.makedirs(test_cls_path, exist_ok=True)
# 随机划分训练集和测试集
random.shuffle(imgs)
train_imgs = imgs[:num_train]
test_imgs = imgs[num_train:]
# 复制图片到训练集和测试集目录
for img in train_imgs:
src_path = os.path.join(cls_path, img)
dst_path = os.path.join(train_cls_path, img)
shutil.copy(src_path, dst_path)
for img in test_imgs:
src_path = os.path.join(cls_path, img)
dst_path = os.path.join(test_cls_path, img)
shutil.copy(src_path, dst_path)
```
接下来,我们需要定义模型。以下是使用ResNet-18作为模型的代码:
```python
import torch.nn as nn
import torchvision.models as models
class FruitClassifier(nn.Module):
def __init__(self, num_classes):
super(FruitClassifier, self).__init__()
self.model = models.resnet18(pretrained=True)
num_features = self.model.fc.in_features
self.model.fc = nn.Linear(num_features, num_classes)
def forward(self, x):
x = self.model(x)
return x
```
我们可以使用预训练的ResNet-18模型,并将其输出层替换为一个具有num_classes个输出的全连接层。在前向传递期间,我们只需调用self.model(x)。
接下来,我们需要定义训练和测试函数:
```python
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets, transforms
def train(model, train_loader, optimizer, criterion):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test(model, test_loader, criterion):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item() * len(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_acc = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), test_acc))
```
在训练函数中,我们首先将模型设置为训练模式(model.train())。然后对每个批次的数据进行前向传递、计算损失、反向传播和优化器更新。最后打印训练损失。
在测试函数中,我们首先将模型设置为评估模式(model.eval())。然后遍历测试集中的每个批次,进行前向传递和计算损失。最后计算测试集上的平均损失和准确率。
接下来,我们需要定义主函数来训练模型:
```python
def main():
# 定义超参数
batch_size = 64
num_epochs = 10
learning_rate = 0.001
num_classes = 131
# 定义数据增强和预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 加载训练集和测试集
train_dataset = datasets.ImageFolder(train_path, transform=transform_train)
test_dataset = datasets.ImageFolder(test_path, transform=transform_test)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 定义模型、损失函数和优化器
model = FruitClassifier(num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 训练模型
for epoch in range(1, num_epochs + 1):
train(model, train_loader, optimizer, criterion)
test(model, test_loader, criterion)
```
在主函数中,我们首先定义超参数,包括批量大小、训练周期和学习率。然后定义数据增强和预处理。接下来加载训练集和测试集,并使用torch.utils.data.DataLoader进行批量处理和数据加载。然后定义模型、损失函数和优化器。最后训练模型。
最后,我们需要将训练好的模型应用到图片识别界面中。以下是完整的代码:
```python
import sys
from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QPushButton, QVBoxLayout, QHBoxLayout, QFileDialog
from PyQt5.QtGui import QPixmap
from PyQt5.QtCore import Qt
from PIL import Image
class MainWindow(QWidget):
def __init__(self):
super().__init__()
self.initUI()
# 加载训练好的模型
self.model = FruitClassifier(num_classes=131)
self.model.load_state_dict(torch.load('./fruits-360-resnet18.pth', map_location=torch.device('cpu')))
self.model.eval()
# 定义类别名称
self.classes = os.listdir(train_path)
# 定义预处理和转换
self.transform = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def initUI(self):
# 定义界面控件
self.label_img = QLabel(self)
self.label_img.setAlignment(Qt.AlignCenter)
self.label_pred = QLabel(self)
self.label_pred.setAlignment(Qt.AlignCenter)
self.button_browse = QPushButton('Browse', self)
self.button_browse.clicked.connect(self.browseImage)
# 定义布局
hbox = QHBoxLayout()
hbox.addWidget(self.button_browse)
vbox = QVBoxLayout()
vbox.addWidget(self.label_img)
vbox.addWidget(self.label_pred)
vbox.addLayout(hbox)
self.setLayout(vbox)
# 定义窗口
self.setGeometry(100, 100, 400, 400)
self.setWindowTitle('Fruit Image Classifier')
self.show()
def browseImage(self):
# 打开文件对话框
file_dialog = QFileDialog()
file_dialog.setFileMode(QFileDialog.ExistingFile)
file_dialog.setNameFilter('Images (*.png *.xpm *.jpg *.bmp)')
if file_dialog.exec_():
file_path = file_dialog.selectedFiles()[0]
self.classifyImage(file_path)
def classifyImage(self, file_path):
# 加载图片并进行预处理和转换
img = Image.open(file_path)
img = self.transform(img)
img = img.unsqueeze(0)
# 进行预测
with torch.no_grad():
output = self.model(img)
pred = output.argmax(dim=1).item()
pred_name = self.classes[pred]
pred_prob = F.softmax(output, dim=1)[0][pred].item()
# 显示图片和预测结果
pixmap = QPixmap(file_path).scaledToWidth(300)
self.label_img.setPixmap(pixmap)
self.label_pred.setText('Prediction: {} ({:.1f}%)'.format(pred_name, pred_prob * 100))
if __name__ == '__main__':
app = QApplication(sys.argv)
window = MainWindow()
sys.exit(app.exec_())
```
在图片识别界面中,我们使用QLabel来显示图片和预测结果,并使用QPushButton来打开文件对话框。当用户选择一个图片时,我们将其路径传递给classifyImage函数。在classifyImage函数中,我们首先加载图片并进行预处理和转换。然后使用训练好的模型进行预测,并显示预测结果。
最后,我们需要保存训练好的模型:
```python
# 保存模型
torch.save(model.state_dict(), './fruits-360-resnet18.pth')
```
现在,我们可以运行主函数来训练模型并保存模型。然后运行图片识别界面来测试模型。
阅读全文