m=0 for k in range(1,n+1): for j in range(k,-1,-1): m +=j 分析算法的时间复杂度

时间: 2024-04-04 07:36:00 浏览: 65
这段代码的时间复杂度是 $O(n^2)$。原因在于它使用了两个嵌套的循环语句,外层循环执行了 $n$ 次,而内层循环在第 $i$ 次外层循环时会执行 $i+1$ 次。因此,内层循环总的执行次数是 $1+2+3+\cdots+n$,即等差数列求和公式 $\frac{(1+n) \times n}{2}$,因此内层循环的时间复杂度是 $O(n^2)$。因为外层循环执行 $n$ 次,所以总的时间复杂度是 $O(n^3)$。
相关问题

while True: n,m=map(int,input().split()) a=[0 for i in range(n+1)] count=1 for i in range(m): j,k=map(int,input().split()) if a[j]==0 and a[k]==0: a[j]=count a[k]=count count+=1 elif a[j]!=0 and a[k]==0: a[k]=a[j] elif a[k]!=0 and a[j]==0: a[j]=a[k] elif a[j]!=a[k] and a[j]!=0 and a[k]!=0: if a[j]<a[k]: for p in range(1,n+1): if a[p]==a[k]: a[p]=a[j] else: for p in range(1,n+1): if a[p]==a[j]: a[p]=a[k] r=0 flag=0 for i in range(1,n+1): if a[i]==0: r+=1 for i in range(1,count): flag=0 for j in range(1,n+1): if a[j]==i: flag=1 break if flag==1: r+=1 print(r)转Java

你好,以下是将Python代码转换成Java代码的结果: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (true) { int n = scanner.nextInt(); int m = scanner.nextInt(); int[] a = new int[n + 1]; int count = 1; for (int i = 0; i < m; i++) { int j = scanner.nextInt(); int k = scanner.nextInt(); if (a[j] == 0 && a[k] == 0) { a[j] = count; a[k] = count; count++; } else if (a[j] != 0 && a[k] == 0) { a[k] = a[j]; } else if (a[k] != 0 && a[j] == 0) { a[j] = a[k]; } else if (a[j] != a[k] && a[j] != 0 && a[k] != 0) { if (a[j] < a[k]) { for (int p = 1; p <= n; p++) { if (a[p] == a[k]) { a[p] = a[j]; } } } else { for (int p = 1; p <= n; p++) { if (a[p] == a[j]) { a[p] = a[k]; } } } } } int r = 0; int flag = 0; for (int i = 1; i <= n; i++) { if (a[i] == 0) { r++; } } for (int i = 1; i < count; i++) { flag = 0; for (int j = 1; j <= n; j++) { if (a[j] == i) { flag = 1; break; } } if (flag == 1) { r++; } } System.out.println(r); } } } ``` 请注意,Java 代码中的输入方式是使用 `Scanner` 类实现的,如果您的 Python 代码中使用了其他输入方式,需要根据实际情况进行修改。同时,Java 代码中的数组下标从 0 开始,而 Python 代码中的数组下标从 1 开始,需要注意将数组下标进行适当的调整。

测试点信息源代码 源代码 复制 import numpy as np n, m, k = map(int, input().split()) mat = np.zeros((n,n)) for i in range(m): x, y = map(int, input().split()) for j in range(x-2,x+3): if j >=0: mat[j-1][y-1] = 1 for j in range(y-2,y+3): if j >=0: mat[x-1][j-1] = 1 mat[x-2][y-2]=1 mat[x-2][y]=1 mat[x][y-2]=1 mat[x][y]=1 for i in range(k): o, p = map(int, input().split()) for j in range(o-3,o+2): for k in range(p-3,p+2): if j>=0 and k >=0: mat[j][k] = 1 cnt = 0 for i in range(n): for j in range(n): if mat[i][j] == 0: cnt +=1 print(cnt)优化代码,解决runtineerror

为了解决运行时错误并优化代码,可以尝试以下修改: 1. 使用try-except语句来处理可能引发的运行时错误。例如,如果输入的n、m或k不是整数,则会引发ValueError。可以使用try-except语句来捕获这些错误并给出相应的错误提示。 2. 在循环中,可以使用min和max函数来限制索引的范围,以避免出现索引越界的情况。 3. 可以使用numpy的ndarray的方法和函数来优化矩阵操作。例如,可以使用np.sum函数来计算矩阵中等于0的元素的数量,而不是使用内嵌的for循环。 修改后的代码如下所示: ```python import numpy as np try: n, m, k = map(int, input().split()) mat = np.zeros((n, n)) for i in range(m): x, y = map(int, input().split()) for j in range(max(0, x - 2), min(n, x + 3)): mat[j - 1][y - 1] = 1 for j in range(max(0, y - 2), min(n, y + 3)): mat[x - 1][j - 1] = 1 mat[x - 2][y - 2] = 1 mat[x - 2][y] = 1 mat[x][y - 2] = 1 mat[x][y] = 1 for i in range(k): o, p = map(int, input().split()) for j in range(max(0, o - 3), min(n, o + 2)): for l in range(max(0, p - 3), min(n, p + 2)): mat[j][l] = 1 cnt = np.sum(mat == 0) print(cnt) except ValueError: print("输入的n、m或k不是整数!") except IndexError: print("索引超出矩阵范围!") ``` 请注意,这只是一种可能的优化方法,具体取决于您的需求和输入数据的特点。
阅读全文

相关推荐

最新推荐

recommend-type

python中实现k-means聚类算法详解

for j in range(n): minJ = np.min(dataSet[:, j]) rangeJ = np.max(dataSet[:, j]) - minJ centroids[:, j] = minJ + rangeJ * np.random.rand(k, 1) return centroids def kMeans(dataSet, k, distMeas=...
recommend-type

Simulink仿真:基于扰动观察法的光伏MPPT改进算法 参考文献:基于扰动观察法的光伏MPPT改进算法+录制视频讲解 仿真平台:MATLAB Simulink 关键词:光伏;MPPT;扰动观察法

Simulink仿真:基于扰动观察法的光伏MPPT改进算法 参考文献:基于扰动观察法的光伏MPPT改进算法+录制视频讲解 仿真平台:MATLAB Simulink 关键词:光伏;MPPT;扰动观察法;模糊控制 主要内容:针对 MPPT 算法中扰动观察法在稳态时容易在 MPP 点处震荡,以及步长固定后无法调整等缺点,提出一种算法的优化改进,将模糊控制器引入算法中,通过将计算得到的偏差电压作为第一个输入量,同时考虑到扰动观察法抗干扰能力弱,再增加一个反馈变量做为第二输入量来提高其稳定性.仿真分析表明,相比较传统的扰动观察法,在外部温度和光照强度发生变化时,改进的扰动观察法稳定性较好,追踪速率有所提高,同时需要的参数计算量少,能较好的追踪光伏最大功率。
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘

![【单相整流器终极指南】:电气工程师的20年实用技巧大揭秘](https://www.kemet.com/content/dam/kemet/lightning/images/ec-content/2020/08/Figure-1-film-filtering-solution-diagram.jpg) # 摘要 单相整流器是电力电子技术中应用广泛的设备,用于将交流电转换为直流电。本文首先介绍了单相整流器的基础知识和工作原理,分析了其设计要点,性能评估方法以及在电力系统和电子设备中的应用。接着,探讨了单相整流器的进阶应用和优化策略,包括提高效率和数字化改造。文章还通过具体案例分析,展示了单
recommend-type

OxyPlot CategoryAxis

在OxyPlot中,CategoryAxis用于创建一个基于类别标签的轴,通常用于折线图或柱状图,其中每个轴的值代表不同的类别。以下是如何在XAML中设置和使用CategoryAxis的一个简单示例: ```xml <!-- 在你的XAML文件中 --> <oxy:CartesianChart x:Name="chart"> <oxy:CartesianChart.Axes> <oxy:CategoryAxis Title="Category" Position="Bottom"> <!-- 可以在这里添加类别标签 -->