stm32cubeide使用stlink烧录

时间: 2023-05-31 21:17:48 浏览: 196
### 回答1: 要使用STM32CubeIDE和STLink进行烧录,您需要按照以下步骤操作: 1. 首先,将您的STM32开发板连接到计算机上,并确保STLink驱动程序已正确安装。 2. 打开STM32CubeIDE,并创建一个新项目或打开现有项目。 3. 在“Project Explorer”窗口中,右键单击您的项目,并选择“Properties”。 4. 在“Properties”窗口中,选择“C/C++ Build”>“Settings”。 5. 在“Settings”窗口中,选择“Tool Settings”>“ST-Link Debugger”。 6. 在“ST-Link Debugger”选项卡中,确保“ST-Link Interface”设置为“SWD”。 7. 点击“Apply”和“OK”按钮,保存更改并关闭窗口。 8. 在“Project Explorer”窗口中,右键单击您的项目,并选择“Debug As”>“STM32 MCU Debugging”。 9. 在“Debug Configurations”窗口中,选择“Debugger”选项卡,并确保“ST-Link Debugger”被选中。 10. 点击“Debug”按钮,开始烧录您的程序。 11. 如果一切顺利,您的程序将被成功烧录到STM32开发板上。 希望这些步骤能帮助您使用STM32CubeIDE和STLink进行烧录。 ### 回答2: STM32CubeIDE是STMicroelectronics官方的集成开发环境,它支持ST32F0,STM32F1,STM32F2,STM32F3,STM32F4,STM32F7和STM32H7系列MCU。STM32CubeIDE允许使用ST-LINK调试器来烧录和调试STM32 MCU。 ST-LINK是一款USB调试器和烧录器,它是ST公司开发的一款工具。ST-LINK在调试和烧录STM32 MCU时提供了简单易用的接口,可以快速地编程和调试STM32系列的MCU。 要使用STM32CubeIDE进行烧录,您需要安装STM32CubeIDE和ST-LINK调试器。此外,您还需要下载并安装必要的驱动程序。 烧录STM32 MCU的步骤如下: 1. 打开STM32CubeIDE,并打开您的项目。 2. 连接ST-LINK调试器到主机并连接到您的PCB板。 3. 选择 “Run” 菜单下的 “Debug Configurations” 命令。 4. 在左侧窗格中选择 “Ac6 STM32 Debugging” 并创建一个新的配置。 5. 在 “Target” 选项卡中选择适当的 MCU,并根据您的硬件设置调整连接。 6. 在 “Debugger” 选项卡中选择 ST-LINK 和相关端口。 7. 调整 “Debug” 选项卡中的选项,包括目标固件、工作目录和启动命令。 8. 单击 “Apply” 按钮应用配置更改。 9. 单击 “Debug” 开始烧录并调试。 10. 调试和烧录完成后,您可以拔掉ST-LINK调试器并重启MCU。 总之,使用STM32CubeIDE和ST-LINK调试器可以方便快捷地烧录和调试STM32 MCU。使用此工具需要注意准确的操作,包括适当的连接和设置,以确保烧录成功并获得准确的结果。 ### 回答3: STM32CubeIDE是STMicroelectronics推出的一款基于Eclipse的集成开发环境,能够为STM32系列的微控制器提供全面的开发工具和支持。在使用STM32CubeIDE开发STM32微控制器时,烧录器件是一个很关键的过程,其中ST-Link是官方推荐的烧录器件之一。 ST-Link可以通过USB连接到计算机,同时可以和STM32微控制器通信,将编译好的程序下载到微控制器,从而实现程序的运行。与其他烧录器件不同的是,ST-Link可以在调试过程中读取内存和寄存器内容,以及在程序运行时对程序进行单步执行和断点调试,从而极大地方便了程序的开发和调试。 使用STM32CubeIDE进行STM32微控制器的烧录过程是比较简单的,下面是一些基本步骤: 1. 准备好ST-Link 首先需要准备好ST-Link,将其连接到计算机的USB接口上,并与目标开发板的烧录口连接。 2. 创建工程 在STM32CubeIDE中创建一个新的工程,并选择合适的芯片型号,配置好工程的基本参数。 3. 编译项目 使用STM32CubeIDE内置的编译器对项目进行编译,产生可执行的二进制文件(.elf)。 4. 配置调试器 右键单击项目,选择“Debug As” - “Debug Configurations”,在“Debugger”选项卡中选择“ST-Link Debugger”,并在“Connection”选项卡中勾选“Connect under Reset”和“Reset and Delay”,单击“Apply”保存配置。 5. 烧录程序 在STM32CubeIDE中选择“Debug” - “Debug Configurations”,并选择刚刚配置好的调试器,单击“Debug”开始烧录过程。可以观察到程序正在被下载并烧录进STM32微控制器中。 6. 调试程序 在程序下载完成后,可以进行调试操作。可以在“Debug”视图界面中设置断点、单步执行、查看变量和内存等,以便进行程序的调试和测试。 总体来说,使用STM32CubeIDE进行STM32微控制器的烧录非常方便和快捷。通过ST-Link的支持,能够快速调试程序,提高开发效率。当然,在使用STM32CubeIDE进行STM32微控制器的烧录和调试时,也需要注意一些问题,例如确保选择正确的芯片型号、正确连接ST-Link和开发板等,以避免出现问题。

相关推荐

搭建Linux下的STM32开发环境可以按照以下步骤进行: 1. 安装交叉编译工具链:可以选择ARM官方提供的交叉编译工具链或者其他第三方的交叉编译工具链,例如gcc-arm-none-eabi等。安装方法可以通过apt-get或者从官方网站下载二进制文件进行安装。 2. 安装STM32CubeMX:可以从ST官方网站下载,安装好后可以通过图形化界面来生成STM32代码的初始化代码,方便快捷。 3. 安装OpenOCD:OpenOCD是一个开源的JTAG调试工具,可以用于与STM32进行调试和烧录。可以通过apt-get或者从官方网站下载源代码编译安装。 4. 安装调试工具:可以选择JLink或者STLink等调试工具,安装方法可以参考官方文档。 5. 配置开发环境:将安装好的交叉编译工具链、STM32CubeMX、OpenOCD以及调试工具配置好环境变量,以便在终端中能够调用。 以上就是在Linux下搭建STM32开发环境的一些基本步骤,可以根据自己的实际情况进行调整和完善。补充一下关于安装交叉编译工具链的步骤: 如果选择从官方网站下载二进制文件进行安装,可以按照以下步骤进行: 1. 在 ARM 官网下载适用于 Linux 系统的交叉编译工具链压缩包,例如 gcc-arm-none-eabi-10-2020-q4-major-x86_64-linux.tar.bz2。 2. 解压缩该压缩包到指定的目录下,例如 /opt/gcc-arm-none-eabi-10-2020-q4-major/。 3. 配置环境变量,将该工具链的 bin 目录加入到 PATH 环境变量中,例如执行以下命令: export PATH=$PATH:/opt/gcc-arm-none-eabi-10-2020-q4-major/bin 注意:以上命令只在当前终端窗口中生效,如果希望永久生效,可以将该命令添加到 ~/.bashrc 文件中。 另外,如果选择使用 apt-get 命令安装交叉编译工具链,则可以执行以下命令进行安装: sudo apt-get install gcc-arm-none-eabi 以上命令会从 Ubuntu 软件仓库中下载并安装 gcc-arm-none-eabi 工具链。搭建 Linux STM32 开发环境的步骤如下: 1. 安装 GCC 工具链:在 Linux 上安装 GCC 工具链,这是编译和链接 STM32 代码所需的基本工具。可以使用命令 sudo apt-get install gcc-arm-none-eabi 在 Ubuntu 上安装。 2. 安装 OpenOCD:OpenOCD 是一个开源的 On-Chip 调试器和编程器,支持 STM32 和其他芯片。可以使用命令 sudo apt-get install openocd 在 Ubuntu 上安装。 3. 安装 STM32CubeMX:STM32CubeMX 是一个 STM32 的配置工具,可以通过图形界面配置 STM32 的引脚、时钟等,并生成代码框架。可以从官网下载适用于 Linux 的版本并进行安装。 4. 使用 IDE 进行开发:可以使用多种集成开发环境(IDE)进行 STM32 开发,如 Eclipse、VSCode 等。在 IDE 中设置好 GCC 工具链和 OpenOCD 的路径,配置好 STM32CubeMX 生成的代码路径,就可以开始进行开发了。 希望以上步骤可以帮助您搭建 Linux STM32 开发环境。补充一些关于Linux下搭建STM32开发环境的其他细节: 6. 安装串口调试工具:在进行STM32开发时,可能需要通过串口与STM32进行通信调试。常用的串口调试工具有minicom、picocom等。可以使用命令sudo apt-get install minicom或者sudo apt-get install picocom进行安装。 7. 配置udev规则:如果使用USB转串口调试器与STM32进行调试,需要在Linux系统中配置udev规则,以便让普通用户也能够访问/dev/ttyUSB0等串口设备。可以创建一个名为99-stlink.rules的文件,在该文件中添加以下内容: #ST-LINK/V2 and V2-1 SUBSYSTEM=="usb", ATTR{idVendor}=="0483", ATTR{idProduct}=="3748", MODE="0666" SUBSYSTEM=="usb", ATTR{idVendor}=="0483", ATTR{idProduct}=="374b", MODE="0666" SUBSYSTEM=="usb", ATTR{idVendor}=="0483", ATTR{idProduct}=="374d", MODE="0666" #ST-LINK/V3 and V3-1 SUBSYSTEM=="usb", ATTR{idVendor}=="0483", ATTR{idProduct}=="374e", MODE="0666" SUBSYSTEM=="usb", ATTR{idVendor}=="0483", ATTR{idProduct}=="374f", MODE="0666" 将该文件保存在/etc/udev/rules.d/目录下,然后执行以下命令使规则生效: sudo udevadm control --reload-rules sudo udevadm trigger 8. 安装调试插件:如果使用Eclipse或者VSCode等IDE进行STM32开发,可能需要安装相应的调试插件。例如,使用Eclipse进行STM32开发时,需要安装GNU MCU Eclipse插件和OpenOCD插件。可以在Eclipse的Marketplace中搜索相应的插件进行安装。如果使用VSCode进行STM32开发,可以安装Cortex-Debug插件和OpenOCD插件。 希望以上细节可以帮助您更好地搭建Linux下的STM32开发环境。搭建 Linux 下的 STM32 开发环境需要以下步骤: 1. 安装 ARM 工具链,如 gcc-arm-none-eabi。 2. 安装 OpenOCD 调试工具。 3. 安装 STM32CubeMX,用于生成初始化代码。 4. 安装一个编辑器或 IDE,如 Visual Studio Code 或 Eclipse。 5. 在编辑器或 IDE 中配置调试器,以便连接 OpenOCD。 完成以上步骤后,您就可以开始在 Linux 上进行 STM32 的开发了。要在Linux上搭建STM32开发环境,需要安装以下软件和工具: 1. GNU工具链:GCC交叉编译器、GDB调试器和binutils等。 2. OpenOCD:开源On-Chip调试工具,用于与STM32芯片进行通信。 3. STM32CubeMX:一个可视化的工具,用于配置STM32微控制器并生成基本代码。 4. IDE:可以选择Eclipse、VSCode或其他文本编辑器来编写代码。 以下是基本的安装步骤: 1. 安装GNU工具链。可以从官方网站或软件包管理器中下载安装。例如,在Ubuntu上可以使用以下命令: sudo apt-get install gcc-arm-none-eabi gdb-arm-none-eabi binutils-arm-none-eabi 2. 安装OpenOCD。同样可以从官方网站或软件包管理器中下载安装。例如,在Ubuntu上可以使用以下命令: sudo apt-get install openocd 3. 下载并安装STM32CubeMX。可以从STMicroelectronics的官方网站上下载。安装完成后,启动STM32CubeMX并配置所需的微控制器。 4. 安装所选的IDE。例如,可以使用以下命令在Ubuntu上安装VSCode: sudo snap install --classic code 5. 在IDE中创建一个新项目,并将生成的代码导入其中。在项目设置中,配置编译器和调试器。确保编译器和调试器的路径正确。 6. 连接STM32芯片并启动OpenOCD。可以使用以下命令启动OpenOCD: openocd -f interface/<interface>.cfg -f target/<target>.cfg 其中,<interface>和<target>取决于所使用的硬件调试接口和STM32芯片型号。在启动OpenOCD后,可以在IDE中连接到OpenOCD并开始调试。要在Linux系统下搭建STM32开发环境,需要执行以下步骤: 1. 安装ARM交叉编译工具链(gcc-arm-none-eabi),可以在官网下载安装包,也可以使用Linux发行版自带的包管理器安装。 2. 安装OpenOCD,这是一个开源的On-Chip Debugging和编程工具,可以通过命令行与STM32芯片进行交互。同样,可以从官网下载安装包或使用包管理器安装。 3. 在开发工具中配置编译选项,例如在Eclipse中配置gcc-arm-none-eabi编译器路径和OpenOCD路径。 4. 编写代码并编译,生成可执行文件(.elf文件)。 5. 使用OpenOCD与STM32芯片连接,下载程序到芯片中进行调试和运行。 需要注意的是,STM32系列芯片有很多型号,不同型号的芯片具有不同的特性和规格,因此需要针对具体芯片型号进行适当的配置和开发。搭建Linux环境进行STM32开发需要完成以下几个步骤: 1. 安装ARM交叉编译器:ARM交叉编译器是用于将C/C++源代码编译成可在ARM架构下运行的二进制文件。可以从ARM官网下载交叉编译器,并按照官方说明进行安装。 2. 安装OpenOCD:OpenOCD是用于连接开发板和计算机的工具,可以在Linux环境下运行。可以通过包管理器或从官方网站下载并安装。 3. 安装调试工具:可以使用Eclipse、VS Code等集成开发环境(IDE)来开发STM32应用程序。在安装IDE之前,需要安装Java运行时环境(JRE)。 4. 配置调试环境:需要将OpenOCD与调试工具进行连接,以便进行代码调试。可以在调试工具中配置OpenOCD路径和连接参数,使其能够正确地连接到开发板。 5. 开始开发:完成上述步骤后,就可以开始在Linux环境下开发STM32应用程序了。可以使用各种常用的工具和库,如GCC编译器、Makefile构建工具、STM32Cube库等。 需要注意的是,每个开发板的配置可能有所不同,因此需要根据实际情况进行相应的调整。要在Linux系统上搭建STM32开发环境,您可以按照以下步骤操作: 1. 安装必要的软件包:在Linux终端中使用包管理器安装以下软件包:build-essential、gcc-arm-none-eabi、openocd和stlink-tools。 2. 下载并安装IDE:选择一个适合您的开发需求的IDE,比如Eclipse、Code::Blocks等。安装方法可能因IDE而异,请参考IDE官方文档。 3. 配置环境变量:将ARM工具链的路径添加到系统的环境变量中。您可以在终端中使用以下命令打开环境变量配置文件: sudo nano /etc/environment 在文件的末尾添加以下内容,将\替换为您安装ARM工具链的路径: PATH="$PATH:/bin" 保存文件并退出。 4. 测试环境:打开IDE,创建一个简单的STM32项目,并构建并下载到设备上。如果一切正常,您的开发环境就已经搭建好了。 希望这些步骤能帮助您成功搭建STM32开发环境。要在Linux上搭建STM32开发环境,需要完成以下步骤: 1. 安装交叉编译工具链。可以通过包管理器安装,例如在Ubuntu上可以使用以下命令安装arm-none-eabi-gcc:sudo apt-get install gcc-arm-none-eabi 2. 下载并安装ST-Link工具。可以从STMicroelectronics官网下载最新版本的ST-Link软件包,并按照说明进行安装。 3. 安装OpenOCD调试工具。同样可以使用包管理器安装,例如在Ubuntu上可以使用以下命令安装:sudo apt-get install openocd 4. 安装STM32CubeMX配置工具。该工具可以帮助生成初始化代码和配置文件。可以从STMicroelectronics官网下载最新版本的STM32CubeMX软件包,并按照说明进行安装。 5. 在开发环境中添加STM32库文件。可以从STMicroelectronics官网下载最新版本的STM32库文件,并将其复制到开发环境的相应目录下。 完成以上步骤后,就可以在Linux上进行STM32开发了。 对于Linux STM32开发环境的搭建,可以参考ST官网的文档以及一些社区的帖子,以及一些开源的工具,例如STM32CubeIDE、STM32CubeMX、GCC等。搭建 Linux STM32 开发环境需要以下步骤: 1. 安装 Linux 操作系统:根据自己的喜好选择一个 Linux 发行版,并安装在计算机上。 2. 安装开发工具链:开发 STM32 芯片需要使用交叉编译工具链,可以选择 GNU 工具链或者其他商业工具链。可以通过包管理器安装或者自行下载安装。 3. 安装 OpenOCD:OpenOCD 是一款开源的调试工具,可以用于调试 STM32 芯片。可以通过包管理器安装或者自行下载安装。 4. 安装 STM32CubeMX:STM32CubeMX 是一款图形化的配置工具,可以帮助开发者生成 STM32 代码框架。可以从 STMicroelectronics 官网下载并安装。 5. 配置开发环境:打开 STM32CubeMX,选择相应的 STM32 芯片型号,进行项目配置。生成代码后,使用开发工具链进行编译,并使用 OpenOCD 进行调试和烧录。 以上是搭建 Linux STM32 开发环境的基本步骤,根据具体的开发需求可能会有所变化。要搭建Linux环境下的STM32开发环境,您可以按照以下步骤进行: 1. 安装gcc-arm-none-eabi交叉编译工具链 - 可以从GNU Arm Embedded官网下载最新的版本 - 下载后解压缩到您喜欢的目录 2. 安装OpenOCD调试器 - 可以从OpenOCD官网下载最新的版本 - 下载后解压缩到您喜欢的目录 3. 安装STM32CubeMX - 可以从STMicroelectronics官网下载最新的版本 - 下载后解压缩到您喜欢的目录 4. 配置环境变量 - 在您的.bashrc文件中添加以下内容: export PATH=/path/to/gcc-arm-none-eabi/bin:$PATH export PATH=/path/to/openocd/bin:$PATH 5. 使用STM32CubeMX生成代码 - 打开STM32CubeMX - 选择您的STM32芯片型号 - 配置您的项目 - 生成代码 6. 使用Makefile编译和链接代码 - 在您的工程目录下创建Makefile文件 - 编辑Makefile文件,以包含适当的编译和链接选项 - 在终端中运行make命令以编译和链接代码 7. 使用OpenOCD和GDB调试代码 - 在终端中启动OpenOCD服务器 - 在另一个终端中使用GDB连接到OpenOCD服务器 - 在GDB中设置断点,单步执行代码,查看变量等 希望这些步骤可以帮助您成功搭建Linux环境下的STM32开发环境。 Linux STM32 开发环境搭建可以通过安装特定的软件工具来实现,其中包括编译器、调试器、开发板驱动程序等。同时,还需要安装特定的硬件和软件才能完成开发环境的搭建。要在Linux上搭建STM32开发环境,可以按照以下步骤操作: 1. 安装必要的软件包:GCC编译器、GDB调试器、OpenOCD和ST-Link驱动等。 2. 安装STM32CubeMX,这是一个用于生成STM32代码的图形化工具。 3. 在Linux上安装Eclipse集成开发环境,并添加STM32插件。这些插件可在Eclipse Marketplace中找到。 4. 使用STM32CubeMX生成代码,并导入Eclipse中。 5. 配置Eclipse的编译和调试环境,确保可以使用OpenOCD和ST-Link调试器连接到目标板。 以上是搭建STM32开发环境的大致步骤,具体操作可以参考相关文档或在线教程。要搭建LinuxSTM32开发环境,可以按照以下步骤操作: 1. 下载安装交叉编译工具链:可以选择ARM官方提供的工具链或者其他开发者提供的工具链,安装后将工具链添加到系统环境变量中; 2. 下载安装OpenOCD:OpenOCD是一个开源的On-Chip调试器,用于连接STM32单片机和计算机,安装后需要配置OpenOCD的配置文件; 3. 安装STM32CubeMX:STM32CubeMX是一款免费的软件,可以用于生成STM32单片机的初始化代码和驱动代码,安装后需要配置生成的代码所需的库文件; 4. 安装Eclipse或者其他集成开发环境(IDE):Eclipse是一个免费的开源IDE,可以用于开发STM32项目,安装后需要安装相应的插件和配置开发环境。 以上是大致的搭建步骤,具体的实现可能会因个人环境而异,需要根据具体情况进行调整。要在Linux系统上搭建STM32开发环境,需要执行以下步骤: 1. 安装ARM交叉编译工具链,可以使用apt-get或yum等包管理器安装,命令如下: - Ubuntu/Debian:sudo apt-get install gcc-arm-none-eabi gdb-arm-none-eabi - Fedora/CentOS:sudo yum install arm-none-eabi-gcc arm-none-eabi-gdb 2. 安装OpenOCD(一个开源的调试器和编程器),可以使用包管理器安装,命令如下: - Ubuntu/Debian:sudo apt-get install openocd - Fedora/CentOS:sudo yum install openocd 3. 下载并安装Eclipse IDE for C/C++ Developers和GNU MCU Eclipse插件。Eclipse是一个集成开发环境,GNU MCU Eclipse插件提供了对ARM Cortex-M微控制器的支持。 4. 配置Eclipse和GNU MCU Eclipse插件,以便使用ARM交叉编译工具链和OpenOCD。具体步骤包括: - 在Eclipse中设置交叉编译器路径。 - 在GNU MCU Eclipse插件中设置OpenOCD路径。 - 在Eclipse中创建一个新的C/C++项目,并在项目属性中配置编译器、链接器和调试器选项。 - 在Eclipse中启动OpenOCD服务器,并连接到STM32微控制器。 完成上述步骤后,就可以在Linux系统上搭建STM32开发环境,并使用Eclipse进行编译、调试和烧录STM32程序。搭建Linux STM32开发环境需要以下步骤: 1. 下载安装ARM交叉编译工具链:可以从ARM官网上下载对应的交叉编译工具链,解压后添加到环境变量中。 2. 下载安装OpenOCD:OpenOCD是用于调试和编程STM32芯片的工具,可以从OpenOCD官网上下载对应的版本。 3. 安装STM32CubeMX:STM32CubeMX是一个图形化工具,可以帮助用户生成基于STM32微控制器的初始化代码,可从STMicroelectronics官网上下载。 4. 下载安装Eclipse:Eclipse是一个流行的集成开发环境(IDE),可以用于开发和调试STM32应用程序。可以从Eclipse官网上下载对应的版本。 5. 安装STM32插件:在Eclipse中安装STM32插件,可以方便地开发STM32应用程序。 完成上述步骤后,就可以开始使用Linux STM32开发环境了。搭建 Linux 下的 STM32 开发环境需要以下步骤: 1. 安装 Linux 系统:首先需要在计算机上安装一个 Linux 系统,建议使用 Ubuntu 系统。 2. 安装交叉编译工具链:在 Linux 系统下安装 ARM 交叉编译工具链,可以通过以下命令安装: sudo apt-get install gcc-arm-none-eabi 3. 安装 OpenOCD:OpenOCD 是一个开源的 JTAG/SWD 调试工具,可以用来与 STM32 微控制器进行调试和烧录。可以通过以下命令安装: sudo apt-get install openocd 4. 安装 STM32CubeMX:STM32CubeMX 是一款图形化工具,可以帮助开发者配置 STM32 微控制器的硬件资源和生成初始化代码。可以从 ST 官网上下载并安装。 5. 配置开发环境:在 Linux 下使用 Eclipse 或者其他的 IDE 进行开发,需要安装 C/C++ 开发工具和 Eclipse 插件。此外,还需要在 Eclipse 中配置 OpenOCD 和 STM32CubeMX。 通过以上步骤搭建好的开发环境可以用于 STM32 的开发、调试和烧录。搭建Linux STM32开发环境需要以下步骤: 1. 安装Ubuntu操作系统:首先需要安装Ubuntu操作系统,建议选择最新版本。 2. 安装gcc编译器和make工具:在Ubuntu系统中,打开终端,使用以下命令安装gcc编译器和make工具: sudo apt-get update sudo apt-get install gcc-arm-none-eabi make 3. 安装OpenOCD调试工具:在终端中输入以下命令安装OpenOCD调试工具: sudo apt-get install openocd 4. 安装STM32CubeMX软件:在STMicroelectronics官网下载并安装STM32CubeMX软件,它可以帮助你生成基于STM32微控制器的代码框架。 5. 编写和调试代码:安装好以上工具后,就可以开始编写和调试STM32代码了。 希望这些步骤可以帮助你成功搭建Linux STM32开发环境。要在Linux系统上搭建STM32开发环境,需要进行以下步骤: 1. 安装ARM交叉编译工具链:使用命令行工具,运行以下命令来安装gcc-arm-none-eabi工具链: sudo apt-get update sudo apt-get install gcc-arm-none-eabi 2. 安装STM32CubeMX:可以从ST官网上下载适用于Linux系统的安装包,然后运行安装程序进行安装。 3. 配置Eclipse IDE:可以使用Eclipse作为开发环境,需要安装Eclipse IDE和C/C++开发工具包。然后在Eclipse中添加GNU ARM插件和STM32CubeMX插件。最后,配置编译器路径和调试器路径,以便在Eclipse中编译和调试STM32代码。 4. 使用Makefile编译代码:可以在命令行中使用Makefile编译STM32代码。需要创建Makefile并设置编译器路径、源代码路径和编译选项等参数。然后使用命令行工具进行编译。 以上是在Linux系统上搭建STM32开发环境的一般步骤。具体实现可能因环境和工具版本不同而有所不同。要在Linux系统下搭建STM32开发环境,可以按照以下步骤进行操作: 1. 安装交叉编译工具链:在Linux系统下,可以使用apt-get等包管理器安装ARM架构的交叉编译工具链。 2. 下载并安装STM32CubeMX:这是ST公司提供的一个可视化配置工具,可以帮助用户快速生成STM32芯片的初始化代码和驱动程序。 3. 下载并安装Eclipse:这是一款开源的综合性IDE,可以支持多种编程语言和平台。 4. 安装GNU ARM Eclipse插件:在Eclipse中安装该插件后,可以支持ARM架构的交叉编译和调试。 5. 新建STM32项目:使用STM32CubeMX生成初始化代码后,导入到Eclipse中,即可开始进行开发和调试。 需要注意的是,不同的Linux发行版和版本可能需要的具体安装步骤略有不同,需要根据实际情况进行调整。搭建Linux STM32开发环境的基本步骤如下: 1. 安装交叉编译工具链。在Linux中,需要使用交叉编译工具链编译STM32的代要在Linux上搭建STM32开发环境,您需要按照以下步骤进行操作: 1. 安装必要的软件包。您需要安装GNU工具链(包括GCC编译器、GDB调试器等)、OpenOCD调试器以及STM32CubeMX配置工具等软件包。您可以使用包管理器(例如apt、yum、pacman等)来安装这些软件包。 2. 配置OpenOCD调试器。将OpenOCD配置文件中的目标设备配置为STM32系列设备。此外,您还需要将OpenOCD配置文件中的JTAG接口设置为您所使用的硬件接口(例如ST-Link、J-Link等)。 3. 创建一个简单的STM32项目。您可以使用STM32CubeMX配置工具来创建一个简单的STM32项目。在此过程中,您需要选择您所使用的STM32芯片型号、外设配置以及其他项目设置。 4. 使用GCC编译器进行编译。将STM32项目的源代码文件编译成可执行文件。在此过程中,您需要使用GNU工具链中的GCC编译器。 5. 使用OpenOCD调试器进行调试。将可执行文件烧录到STM32芯片中,并使用OpenOCD调试器进行调试。 希望这些步骤可以帮助您在Linux上搭建STM32开发环境。要搭建 Linux STM32 开发环境,需要以下步骤: 1. 安装 ARM 交叉编译工具链,例如 GCC 或者 Clang。 2. 下载 STM32 芯片的 CMSIS 库和标准外设库(StdPeriph Library)。 3. 下载并安装 STM32CubeMX,用于生成代码和配置 STM32 芯片的外设。 4. 在 Linux 上安装串口通信工具 minicom 或者 picocom,用于与 STM32 芯片进行通信。 5. 安装调试工具 OpenOCD 或者 J-Link,用于烧录代码和进行调试。 完成以上步骤后,就可以开始使用 Linux STM32 开发环境进行开发和调试。 Linux STM32开发环境搭建指的是在Linux操作系统中使用STM32微控制器的开发环境,可以使用官方的STM32CubeIDE或者使用Eclipse和GNU工具链搭建开发环境。搭建 Linux 和 STM32 开发环境的步骤如下: 1. 安装 Linux 操作系统(如 Ubuntu、Debian、Fedora 等)。 2. 安装 GNU 工具链,可以使用命令 sudo apt-get install gcc-arm-none-eabi 在 Ubuntu 等发行版中进行安装。 3. 安装 OpenOCD(开源调试器和编程器),可以使用命令 sudo apt-get install openocd 在 Ubuntu 等发行版中进行安装。 4. 安装 STM32CubeMX,它是一个基于图形界面的配置工具,可以帮助您快速配置 STM32 微控制器并生成初始化代码。 5. 在 STM32CubeMX 中选择相应的 STM32 微控制器,并进行必要的配置(例如时钟配置、引脚配置等)。 6. 生成代码并将其导出到您的 Linux 系统中。 7. 使用 GNU 工具链进行编译,并使用 OpenOCD 进行烧录和调试。 需要注意的是,这只是一个大致的步骤,具体的步骤可能因为不同的操作系统或者 STM32 型号而略有不同。因此,建议您仔细阅读相应的开发环境搭建文档或者手册,以便更好地完成开发环境的搭建。要搭建 Linux 系统下的 STM32 开发环境,可以按照以下步骤进行: 1. 安装 GNU 工具链,可以使用命令行 sudo apt-get install gcc-arm-none-eabi 安装。如果提示无法找到该包,可以使用 sudo add-apt-repository ppa:team-gcc-arm-embedded/ppa 命令添加软件源。 2. 安装 OpenOCD 调试工具,可以使用命令行 sudo apt-get install openocd 安装。 3. 安装 STM32CubeMX 工具,可以在 ST 微电子官网上下载安装包并按照提示进行安装。 4. 在开发环境中新建一个工程,在 STM32CubeMX 中进行芯片选择、引脚配置、时钟配置等操作,并生成对应的代码。 5. 将生成的代码导入到 Eclipse、VSCode 或其他集成开发环境中,编写自己的应用程序。 通过以上步骤,就可以在 Linux 系统下搭建 STM32 开发环境并进行开发了。要在Linux上进行STM32开发,您需要安装以下软件和工具: 1. GNU工具链:使用以下命令安装arm-none-eabi-gcc和其他工具: sudo apt-get install gcc-arm-none-eabi gdb-arm-none-eabi openocd 2. STM32CubeMX:这是一个用于生成STM32初始化代码的GUI工具。您可以从STMicroelectronics官网上下载安装程序。 3. STM32CubeIDE:这是一个基于Eclipse的集成开发环境,它包含了许多有用的工具和插件,如代码编辑器、调试器等等。您可以从STMicroelectronics官网上下载安装程序。 4. 串口调试助手:您可以使用Minicom或者PuTTY等工具与STM32开发板进行串口通信。 一旦您完成了安装,您就可以使用STM32CubeMX生成初始化代码,然后在STM32CubeIDE中编写和调试代码。使用OpenOCD和GDB可以与开发板进行调试和烧录。 希望这些信息对您有所帮助!要在Linux系统上搭建STM32开发环境,需要进行以下步骤: 1. 安装交叉编译工具链:由于STM32是ARM架构,因此需要安装ARM交叉编译工具链。可以在Linux系统中使用包管理器安装,例如在Ubuntu上可以使用命令sudo apt-get install gcc-arm-none-eabi。 2. 安装OpenOCD:OpenOCD是一种开源的调试工具,用于与STM32芯片进行交互。可以在Linux系统中使用包管理器安装,例如在Ubuntu上可以使用命令sudo apt-get install openocd。 3. 安装STM32CubeMX:STM32CubeMX是STMicroelectronics官方提供的图形化配置工具,可用于生成代码框架和初始化代码。可以从官网下载,并按照说明进行安装。 4. 配置开发环境:将STM32CubeMX生成的代码导入到开发环境中,例如使用Eclipse、Code::Blocks等集成开发环境进行开发和调试。需要将交叉编译工具链和OpenOCD配置到开发环境中。 以上是在Linux系统上搭建STM32开发环境的基本步骤,根据具体需求和开发工具不同,还可能需要进行一些其他配置和调整。您好!要在Linux下进行STM32开发,您需要安装一些必要的工具和软件,并且配置好环境。以下是一些基本步骤: 1. 安装交叉编译工具链:您需要下载并安装适用于您的目标硬件的交叉编译工具链,这些工具链能够将源代码编译成可在目标硬件上运行的机器码。您可以从开发板厂商的官方网站或第三方网站下载交叉编译工具链。 2. 安装STM32CubeMX:这是一个用于生成STM32代码的图形化工具。它可以帮助您配置芯片引脚、时钟和其他设置,并生成相应的代码。您可以从STMicroelectronics官方网站下载该工具。 3. 安装Eclipse:这是一种流行的开发环境,您可以使用它来编写、调试和构建代码。您可以从Eclipse官方网站下载适用于Linux的Eclipse版本。 4. 配置Eclipse:在Eclipse中,您需要安装并配置一些插件,例如CDT(C/C++开发工具),以便可以编译和调试C/C++代码。您还需要安装GNU ARM Eclipse插件,它可以帮助您创建和构建ARM架构的代码。 5. 编写代码:在Eclipse中创建新项目,并使用STM32CubeMX生成代码。您可以在Eclipse中编写、调试和构建代码。 6. 烧录代码:使用烧录器将编译好的代码烧录到目标硬件上。 希望这些步骤对您有所帮助。如果您有任何其他问题,请随时问我。
### 回答1: 要点亮STM32最小系统板上的LED灯,需要进行以下步骤: 1. 连接电源:将STM32最小系统板通过Micro USB接口连接电脑或者USB电源适配器,确保系统板上的电源指示灯亮起来。 2. 连接调试器:将STLink调试器通过Mini SWD接口连接到STM32最小系统板上,确保调试器和系统板连接正常。 3. 编写代码:使用Keil等开发工具编写控制STM32的代码,配置GPIO口为输出模式,并将LED引脚拉高电平。 4. 烧录代码:使用开发工具将编写好的代码下载到STM32最小系统板中。 5. 点亮LED:烧录完成后,系统板上的LED灯即可点亮。如果LED灯未点亮,可以检查电源和连接是否正常,以及代码是否正确。 ### 回答2: Stm32最小系统板是一种常见的嵌入式开发板,通常包括了一块Stm32微控制器、晶振、电源电路和一些外设接口。要点亮LED灯,我们需要在Stm32最小系统板上进行一些编程和连接的操作。 首先,我们需要连接一只LED灯到Stm32最小系统板上。一般情况下,LED需要通过一个电阻接在Stm32的GPIO引脚上。我们通过将LED的长脚(阳极)连接到GPIO引脚,将短脚(阴极)连接到地端,使其形成一个闭合电路。 接下来,我们需要编写一段适用于Stm32的C语言程序。通过使用类似于Keil或者STM32CubeIDE的开发环境,我们可以创建一个新的工程,选择适合我们所使用的Stm32型号的项目。然后,我们可以打开main.c文件,编写控制LED点亮的程序。 在程序中,我们需要包含必要的头文件,并定义所使用的引脚和端口。然后,在main函数中,我们要配置GPIO引脚为输出模式,使其能够控制电平。最后,我们可以通过控制GPIO引脚的电平状态来点亮或关闭LED灯。 编写完程序后,我们需要将程序下载到Stm32最小系统板上。通过连接开发板和计算机,我们可以使用相应的工具来烧写程序。在烧写过程完成后,我们可以断开USB连接,将开发板连接到电源供电。 当我们重新上电开启Stm32最小系统板后,根据我们的程序代码逻辑,GPIO引脚会发出相应的控制信号,通过电阻和LED灯,电流流过LED灯,使其发光。这样,我们就成功点亮了LED灯。 总的来说,通过连接LED灯到适当的引脚,编写控制GPIO引脚的程序,我们可以在Stm32最小系统板上点亮LED灯,实现简单的亮灭控制。这是Stm32最小系统板的一个基本应用实例。 ### 回答3: STM32最小系统板是一种基于STM32微控制器的开发板,可以用于学习和开发嵌入式系统。它的设计简洁紧凑,集成了必要的部件和接口,适合初学者学习和入门。 要点亮一颗LED灯,我们首先需要了解STM32最小系统板的硬件结构和引脚分配。通常,LED灯连接在开发板上的某个GPIO引脚上,我们需要将该引脚配置为输出模式,然后向其输出高电平或低电平来控制LED的亮灭。下面是一个简单的步骤: 1. 找到开发板上连接LED的GPIO引脚。通常,在STM32最小系统板上,LED连接在PB5引脚上。 2. 在代码中包含相应的头文件。例如,对于STM32F103系列的微控制器,可以包含stm32f10x.h头文件。 3. 初始化该GPIO引脚。使用相应的函数将其配置为输出模式。例如,使用GPIO_Init()函数,将PB5引脚配置为输出模式。 4. 控制LED的亮灭。使用相应的函数将GPIO引脚输出高电平或低电平。例如,使用GPIO_SetBits()函数将PB5引脚输出高电平,点亮LED。 5. 在主循环中添加适当的延时函数。这样可以看到LED的亮灭效果。可以使用Delay()函数来添加适当的延时。 通过以上步骤,我们可以实现在STM32最小系统板上点亮LED灯。这只是一个非常简单的例子,但是可以帮助我们了解如何控制GPIO引脚以及基本的STM32硬件编程。接下来,我们可以进一步学习和开发更复杂的嵌入式系统。
### 回答1: STLinkV2是ST公司推出的一款调试工具,用于与ST的微控制器进行通信和调试。安装STLinkV2驱动是使用这款调试工具的前提条件之一。 以下是STLinkV2驱动的安装教程: 首先,确保你的电脑已经连接到互联网。 1. 打开STMicroelectronics官方网站(www.st.com)并进入“产品支持”部分。 2. 在搜索框中输入“STLinkV2 驱动”,然后点击搜索按钮。 3. 在搜索结果中找到适合你操作系统的驱动文件,然后点击下载按钮。通常情况下,你可以根据你的操作系统选择相应的驱动程序,如Windows、Linux或MacOS。 4. 下载完成后,打开下载文件所在的目录。 5. 双击驱动程序的安装文件,然后按照安装向导的指示完成安装过程。 6. 在安装过程中,你可能需要接受用户许可协议、选择安装目标文件夹等选项。 7. 完成安装后,重新启动电脑,以确保驱动程序的加载。 8. 连接你的STLinkV2调试工具到电脑的USB接口上。 9. 电脑会自动识别并安装STLinkV2驱动。 10. 安装完成后,你可以打开调试工具软件,连接到目标微控制器,并开始进行调试或烧录程序等操作。 以上是STLinkV2驱动的安装教程,希望对你有所帮助。如果你在安装过程中遇到问题,可以参考ST官方网站上提供的更详细的安装指南或寻求技术支持。 ### 回答2: STLINKV2是一款用于STM32微控制器的调试和编程工具。在安装STLINKV2驱动之前,我们需要确保计算机上已经安装了STM32CubeIDE或者STSW-LINK007软件。 首先,将STLINKV2设备插入计算机的USB接口,并确保设备的指示灯亮起。 其次,打开计算机上的设备管理器。可以通过按下Win + X键,在弹出的菜单中选择“设备管理器”来快速打开设备管理器。 在设备管理器中,我们可以找到“其他设备”或“通用串行总线控制器”中的未知设备,右键点击该设备并选择“更新驱动程序软件”。 在弹出的窗口中,选择“浏览我的计算机以查找驱动程序软件”。 然后,选择STM32CubeIDE或STSW-LINK007软件所在的路径,点击“下一步”。 系统将开始搜索路径中的驱动程序。找到合适的驱动程序后,点击“下一步”进行安装。 完成安装后,我们可以在设备管理器中看到STLINKV2设备已经成功安装并显示正常。 此时,我们可以打开STM32CubeIDE或者STSW-LINK007软件,并选择STLINKV2作为调试和编程工具进行使用。 总结起来,安装STLINKV2驱动的步骤包括插入设备、打开设备管理器、更新驱动程序、选择软件路径、完成安装。完成以上步骤后,STLINKV2设备就可以正常使用了。 ### 回答3: STLinkv2是一个用于ST系列单片机开发的调试和烧录器件,用于连接电脑和单片机,以便进行调试和下载程序。要安装STLinkv2驱动,可以按照以下步骤进行: 1. 首先,确保已经安装了STLinkv2调试器的硬件设备。通常该设备附带单片机开发板上,或者可以单独购买。 2. 连接STLinkv2设备到电脑。可以使用USB线将其连接到电脑的USB端口上。 3. 此时,电脑会自动检测到新设备。如果电脑已经具备了STLinkv2驱动程序,那么驱动安装过程会自动完成。否则,需要手动安装驱动。 4. 在安装驱动之前,可以尝试从ST官方网站上下载最新的STLinkv2驱动程序。驱动程序通常是一个可执行文件,双击打开后按照提示进行安装。 5. 如果无法从ST官方网站下载,可以尝试从单片机开发板的制造商网站下载相应的驱动程序。 6. 在安装驱动程序时,会有一些选项可供选择。通常推荐使用默认选项进行安装,除非有特殊需求。 7. 安装完成后,可以在电脑的设备管理器中检查驱动是否正确安装。打开设备管理器,找到通用串行总线控制器选项,展开后应该能看到STLinkv2设备的名称。 通过以上步骤,你应该能够成功安装STLinkv2驱动程序。安装完成后,你可以使用相应的软件工具(如STLink Utility)来进行单片机的调试和烧录操作。
### 回答1: STLinkV2.1是STMicroelectronics开发的一款调试和编程工具,用于连接和控制ST的微控制器。固件是指STLinkV2.1设备上运行的软件程序。 STLinkV2.1固件是预装在STLinkV2.1设备中的软件。它负责与计算机的调试工具(如IDE)进行通信,并通过SWD或JTAG接口与目标微控制器进行通信。固件提供了一系列功能,包括读取和写入目标设备的内存、擦除和编程目标设备的Flash存储器、设置断点和单步执行等。固件还支持调试功能,如捕获和显示目标设备的状态信息,以帮助开发人员进行故障排除和性能优化。 为了确保设备的稳定性和功能性,STMicroelectronics定期发布STLinkV2.1固件的更新版本。这些更新版本通常包含修复一些已知的问题、改进功能和性能,并增加新的特性和兼容性。 更新STLinkV2.1固件通常需要下载最新的固件文件,然后通过特定的工具将固件文件安装到STLinkV2.1设备中。在安装过程中,请务必遵循STMicroelectronics提供的安装指南,以确保固件更新的顺利进行。 总之,STLinkV2.1固件是STMicroelectronics开发的软件,它是STLinkV2.1设备的核心,负责连接和控制目标微控制器。定期更新固件是确保设备稳定性和功能完善性的重要步骤。 ### 回答2: STLINK-V2.1固件是一种用于STLINK-V2.1调试工具的固件。STLINK-V2.1是由意法半导体(STMicroelectronics)公司开发的一款专业级调试和编程工具,用于与STM8和STM32微控制器进行连接和通信。STLINK-V2.1固件是运行在该调试工具上的软件程序,用于实现与目标微控制器的通信和交互。 STLINK-V2.1固件的功能非常强大,可以通过USB或SWD(Serial Wire Debug)接口与目标设备进行连接,并通过调试和编程操作实现对目标设备的控制和操作。固件支持多种调试功能,如单步调试、断点调试和内存查看等。它还提供了灵活的编程功能,可以对目标设备进行烧录和擦除,以及读取和写入应用程序或数据。 STLINK-V2.1固件具有高度的兼容性和可靠性。它支持各种型号的STM8和STM32微控制器,并且可以与多种开发环境和编程软件配合使用。固件还支持固件升级功能,可以随时更新为最新版本以获取更多的特性和改进。 总之,STLINK-V2.1固件是一种专业级的调试和编程工具的软件程序,具有强大的功能和高度的可靠性。它可以与STM8和STM32微控制器进行连接,实现对目标设备的控制和操作。无论是在嵌入式开发还是产品生产过程中,STLINK-V2.1固件都是一个非常有用的工具。 ### 回答3: STLinkV2.1固件是为STLink V2.1调试工具设计的软件程序,用于与ST的微控制器进行通信和调试。 STLink是ST微电子公司开发的一款专门为STM32系列微控制器设计的调试和编程工具。它通过USB连接到计算机,并与开发环境配合使用,提供了一种方便快捷的方式来调试和编程嵌入式系统。 STLinkV2.1固件是STLink V2.1调试工具的软件固件,通过将此固件加载到STLink V2.1设备上,可以实现与STM32微控制器的通信和调试功能。该固件具有稳定的性能和广泛的兼容性,可用于多种STM32系列微控制器的调试和编程。 使用STLinkV2.1固件,开发人员可以利用ST提供的开发环境(如STM32CubeIDE、Keil MDK等)进行微控制器的调试和编程。它支持通过SWD(Serial Wire Debug)和JTAG(Joint Test Action Group)接口与微控制器通信,提供了单步执行、断点设置、变量监视等功能,方便开发调试嵌入式系统。 STLinkV2.1固件具有丰富的特性和功能,如:支持多种调试模式、支持在线和离线调试、支持断电调试等。它还可以与外部控制器连接,通过GDB(GNU调试器)和CMSIS-DAP(ARM Cortex Microcontroller Software Interface Standard-Debug Access Port)的协议实现更复杂的调试应用。 总之,STLinkV2.1固件是一款高性能、稳定可靠的软件程序,可用于与ST的STM32系列微控制器进行通信和调试。它为开发人员提供了强大的调试和编程功能,有助于加速嵌入式系统的开发进程。

最新推荐

基于python的宠物商店。python+django+vue搭建的宠物商店-毕业设计-课程设计.zip

基于python的宠物商店。python+django+vue搭建的宠物商店-毕业设计-课程设计

基于Matlab的图像去雾(多方法对比,PSNR,信息熵,GUI界面).zip

基于Matlab的图像去雾(多方法对比,PSNR,信息熵,GUI界面).zip

GMW 3600 通用供应商分析 开发 验证过程任务和可交付成果.pdf

GMW 3600 通用供应商分析 开发 验证过程任务和可交付成果.pdf

python租房网站,python+django+vue开发的租房管理系统,房屋出租管理系统-毕业设计-课程设计.zip

python租房网站,python+django+vue开发的租房管理系统,房屋出租管理系统-毕业设计-课程设计.zip

MySQL面试题汇总.zip

mysql

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�