python 提取图像特征点 并 用四叉树均匀化特征点
时间: 2024-03-13 19:21:19 浏览: 187
图像特征点提取
4星 · 用户满意度95%
提取图像特征点可以使用各种算法,比如SIFT、SURF、ORB等。以下是使用SIFT算法提取图像特征点的示例代码:
```python
import cv2
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
kp = sift.detect(gray, None)
img_kp = cv2.drawKeypoints(img, kp, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow('image with keypoints', img_kp)
cv2.waitKey(0)
```
四叉树均匀化特征点是一种优化方法,可以将不均匀分布的特征点均匀地分布在图像中。以下是使用四叉树均匀化特征点的示例代码:
```python
import cv2
import numpy as np
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
sift = cv2.xfeatures2d.SIFT_create()
kp = sift.detect(gray, None)
xy = np.array([p.pt for p in kp], dtype=np.float32)
kdtree = cv2.ml.KDTree_create()
kdtree.train(xy)
min_distance = 10
max_points = 20
new_kp = []
for p in kp:
nn = kdtree.findNearest(np.array([p.pt], dtype=np.float32), max_points)[1][0]
if len(nn) < max_points:
continue
dists = np.sqrt(np.sum((nn - p.pt)**2, axis=1))
if np.min(dists) > min_distance:
new_kp.append(p)
img_kp = cv2.drawKeypoints(img, new_kp, None, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow('image with keypoints', img_kp)
cv2.waitKey(0)
```
在这个示例代码中,我们使用KDTree来查找每个特征点的最近邻点,并且只保留最近邻点距离大于一定值的特征点。这样可以保证特征点在图像中均匀分布。
阅读全文