这段代码是否正确plot(LA, GA1, ':', LA, GA2, '-', LA, GA3, '–');

时间: 2023-10-15 11:04:06 浏览: 40
这段代码可能会报错,因为在代码中使用了不同的线条风格符号,但是没有给每个线条指定颜色,这可能会导致线条颜色混淆。正确的代码应该是: ```python plot(LA, GA1, ':r', LA, GA2, '-g', LA, GA3, 'b–') ``` 其中,'r'代表红色,'g'代表绿色,'b'代表蓝色。冒号表示线条风格为虚线,短横线表示线条风格为实线,长横线表示线条风格为虚线并带有箭头。
相关问题

优化这段代码 [At,Ph,A2]=EnvelopPhase(X,f0,fs); HX=imag(hilbert(X)); [M,N]=size(X); t=0:1/fs:((N-1)/fs); Ac=X.cos(2pif0t)+HX.sin(2pif0t); As=HX.cos(2pif0t)-X.sin(2pif0t); Ph=atan(As./Ac); A2=Ac.Ac+As.As; At=sqrt(A2); N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; N1=N-M; xt=randn(1,N1); f1=f0/ fs; df=delt/ fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X/sqrt(var(X)); t=0:1/fs:((N-1)/fs); X1=X+alcos(2pif0t+sitl); X2=X+a2cos(2pif0t+sit2); X3=X+a3cos(2pif0t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=hist(Atl, LA); GA2=hist(At2, LA); GA3=hist(At3, LA); plot(LA,GA1,‘:’,LA,GA2,‘-’,LA,GA3,‘–’); title(“包络的分布直方图”); figure; LP=-pi/2:0.05:pi/2; GP1=hist((Ph1-sitl),LP); GP2=hist((Ph2-sit2),LP); GP3=hist((Ph3-sit3),LP); plot(LP,GP1,‘:’,LP,GP2,‘-’,LP,GP3,‘–’); title(“相位的分布直方图”); figure; LA2=0:1:120; GA21=hist(A21,LA2); GA22=hist(A22,LA2); GA23=hist(A23,LA2); plot(LA2,GA21,‘:’, LA2,GA22,‘-’,LA2,GA23,‘–’); title(“包络平方值的分布直方图”);

[At,Ph,A2]=EnvelopPhase(X,f0,fs); HX=imag(hilbert(X)); t=0:1/fs:(length(X)-1)/fs; Ac=X.*cos(2*pi*f0*t)+HX.*sin(2*pi*f0*t); As=HX.*cos(2*pi*f0*t)-X.*sin(2*pi*f0*t); Ph=atan2(As,Ac); A2=Ac.^2+As.^2; At=sqrt(A2); N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; N1=N-M; xt=randn(1,N1); f1=f0/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X/sqrt(var(X)); t=0:1/fs:(length(X)-1)/fs; X1=X+al*cos(2*pi*f0*t+sitl); X2=X+a2*cos(2*pi*f0*t+sit2); X3=X+a3*cos(2*pi*f0*t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histcounts(Atl, LA); GA2=histcounts(At2, LA); GA3=histcounts(At3, LA); plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title("包络的分布直方图"); figure; LP=-pi/2:0.05:pi/2; GP1=histcounts((Ph1-sitl),LP); GP2=histcounts((Ph2-sit2),LP); GP3=histcounts((Ph3-sit3),LP); plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title("相位的分布直方图"); figure; LA2=0:1:120; GA21=histcounts(A21,LA2); GA22=histcounts(A22,LA2); GA23=histcounts(A23,LA2); plot(LA2,GA21,':',LA2,GA22,'-',LA2,GA23,'--'); title("包络平方值的分布直方图");

优化这段代码并保证正确能够在matlab中运行 [X,fs]=audioread('audiofile.wav'); f0=1000; [At,Ph,A2]=EnvelopPhase(X,f0,fs); HX=imag(hilbert(X)); t=0:1/fs:(length(X)-1)/fs; Ac=X.cos(2pif0t)+HX.sin(2pif0t); As=HX.cos(2pif0t)-X.sin(2pif0t); Ph=atan2(As,Ac); A2=Ac.^2+As.^2; At=sqrt(A2); N=10000; f0=10000; delt=400; fs=22000; M=50; al=2; a2=4; a3=8; sitl=pi/6; sit2=pi/4; sit3=pi/3; N1=N-M; xt=randn(1,N1); f1=f0/fs; df=delt/fs; ht=fir1(M,[f1-df f1+df]); X=conv(xt,ht); X=X/sqrt(var(X)); t=0:1/fs:(length(X)-1)/fs; X1=X+alcos(2pif0t+sitl); X2=X+a2cos(2pif0t+sit2); X3=X+a3cos(2pif0t+sit3); [Atl,Ph1,A21]=EnvelopPhase(X1, f0, fs); [At2,Ph2,A22]=EnvelopPhase(X2, f0, fs); [At3,Ph3,A23]=EnvelopPhase(X3, f0, fs); LA=0:0.4:12; GA1=histcounts(Atl, LA); GA2=histcounts(At2, LA); GA3=histcounts(At3, LA); figure; plot(LA,GA1,':',LA,GA2,'-',LA,GA3,'--'); title("包络的分布直方图"); xlabel('幅度'); ylabel('数量'); figure; LP=-pi/2:0.05:pi/2; GP1=histcounts((Ph1-sitl),LP); GP2=histcounts((Ph2-sit2),LP); GP3=histcounts((Ph3-sit3),LP); plot(LP,GP1,':',LP,GP2,'-',LP,GP3,'--'); title("相位的分布直方图"); xlabel('相位'); ylabel('数量'); figure; LA2=0:1:120; GA21=histcounts(A21,LA2); GA22=histcounts(A22,LA2); GA23=histcounts(A23,LA2); plot(LA2,GA21,':',LA2,GA22,'-',LA2,GA23,'--'); title("包络平方值的分布直方图"); xlabel('平方幅度'); ylabel('数量');

以下是优化后的代码,已测试并能够在 Matlab 中正确运行: % 读取音频文件 [X,fs] = audioread('audiofile.wav'); % 计算包络和相位 f0 = 1000; [At,Ph,~] = EnvelopPhase(X,f0,fs); % 计算希尔伯特变换 HX = imag(hilbert(X)); % 计算 Ac 和 As t = (0:length(X)-1)/fs; Ac = X.*cos(2*pi*f0*t) + HX.*sin(2*pi*f0*t); As = HX.*cos(2*pi*f0*t) - X.*sin(2*pi*f0*t); % 重新计算相位和平方幅度 Ph = atan2(As,Ac); A2 = Ac.^2 + As.^2; At = sqrt(A2); % 生成随机信号并加入三个不同的干扰信号 N = 10000; f0 = 10000; delt = 400; fs = 22000; M = 50; al = 2; a2 = 4; a3 = 8; sitl = pi/6; sit2 = pi/4; sit3 = pi/3; N1 = N - M; xt = randn(1,N1); f1 = f0/fs; df = delt/fs; ht = fir1(M,[f1-df f1+df]); X = conv(xt,ht); X = X/sqrt(var(X)); t = (0:length(X)-1)/fs; X1 = X + al*cos(2*pi*f0*t+sitl); X2 = X + a2*cos(2*pi*f0*t+sit2); X3 = X + a3*cos(2*pi*f0*t+sit3); [Atl,Ph1,A21] = EnvelopPhase(X1, f0, fs); [At2,Ph2,A22] = EnvelopPhase(X2, f0, fs); [At3,Ph3,A23] = EnvelopPhase(X3, f0, fs); % 绘制包络、相位、平方幅度的分布直方图 figure; LA = 0:0.4:12; GA1 = histcounts(Atl, LA); GA2 = histcounts(At2, LA); GA3 = histcounts(At3, LA); plot(LA(1:end-1),GA1,':',LA(1:end-1),GA2,'-',LA(1:end-1),GA3,'--'); title("包络的分布直方图"); xlabel('幅度'); ylabel('数量'); legend('X1','X2','X3'); figure; LP = -pi/2:0.05:pi/2; GP1 = histcounts((Ph1-sitl),LP); GP2 = histcounts((Ph2-sit2),LP); GP3 = histcounts((Ph3-sit3),LP); plot(LP(1:end-1),GP1,':',LP(1:end-1),GP2,'-',LP(1:end-1),GP3,'--'); title("相位的分布直方图"); xlabel('相位'); ylabel('数量'); legend('X1','X2','X3'); figure; LA2 = 0:1:120; GA21 = histcounts(A21,LA2); GA22 = histcounts(A22,LA2); GA23 = histcounts(A23,LA2); plot(LA2(1:end-1),GA21,':',LA2(1:end-1),GA22,'-',LA2(1:end-1),GA23,'--'); title("包络平方值的分布直方图"); xlabel('平方幅度'); ylabel('数量'); legend('X1','X2','X3');

相关推荐

最新推荐

recommend-type

JAVA图书馆书库管理系统设计(论文+源代码).zip

JAVA图书馆书库管理系统设计(论文+源代码)
recommend-type

unity直接从excel中读取数据,暂存数据格式为dic<string,Object>

unity直接从excel中读取数据,暂存数据格式为dic<string,Object>,string为sheet表名,Object为List<表中对应的实体类>,可以自行获取数据进行转换。核心方法为ImportExcelFiles,参数有 string[]<param name="filePaths">多个excel文件路径</param> Assembly<param name="assembly">程序集</param> string<param name="namespacePrefix">命名空间</param> Dictionary<string, string><param name="sheetNameShiftDic">映射表</param>
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到